Article

Alzheimer disease biomarkers are associated with body mass index

Department of Neurology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
Neurology (Impact Factor: 8.29). 11/2011; 77(21):1913-20. DOI: 10.1212/WNL.0b013e318238eec1
Source: PubMed

ABSTRACT

Both low and high body mass index (BMI) has been associated with cognitive impairment and dementia risk, including Alzheimer disease (AD). We examined the relationship of BMI with potential underlying biological substrates for cognitive impairment.
We analyzed cross-sectional data from participants enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) with PET imaging using Pittsburgh Compound B (PiB, n = 101) or CSF analyses (n = 405) for β-amyloid peptide (Aβ) and total tau. We assessed the relationship of CSF biomarkers and global PiB uptake with BMI using linear regression controlling for age and sex. We also assessed BMI differences between those who were and were not considered biomarker positive. Finally, we assessed BMI change over 2 years in relationship to AD biomarkers.
No dementia, mild cognitive impairment (MCI), and AD groups were not different in age, education, or BMI. In the overall sample, CSF Aβ (β = 0.181, p < 0.001), tau (β = -0.179, p < 0.001), tau/Aβ ratio (β = -0.180, p < 0.001), and global PiB uptake (β = -0.272, p = 0.005) were associated with BMI, with markers of increased AD burden associated with lower BMI. Fewer overweight individuals had biomarker levels indicative of pathophysiology (p < 0.01). These relationships were strongest in the MCI and no dementia groups.
The presence and burden of in vivo biomarkers of cerebral amyloid and tau are associated with lower BMI in cognitively normal and MCI individuals. This supports previous findings of systemic change in the earliest phases of the disease. Further, MCI in those who are overweight may be more likely to result from heterogeneous pathophysiology.

Download full-text

Full-text

Available from: Jeffrey M Burns, Apr 09, 2014
  • Source
    • "Interestingly, a relationship between BMI and AD neuropathology has also been observed in cognitively-normal elderly subjects. We and others have shown that neuropathological changes of AD found at autopsy are associated with low and declining body mass index (BMI) [128] [129] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although Alzheimer's Disease (AD) is the most common neurodegenerative disease, the etiology of AD is not well understood. In some cases, genetic factors explain AD risk, but a high percentage of late-onset AD is unexplained. The fact that AD is associated with a number of physical and systemic manifestations suggests that AD is a multifactorial disease that affects both the CNS and periphery. Interestingly, a common feature of many systemic processes linked to AD is involvement in energy metabolism. The goals of this review are to 1) explore the evidence that peripheral processes contribute to AD risk, 2) explore ways that AD modulates whole-body changes, and 3) discuss the role of genetics, mitochondria, and vascular mechanisms as underlying factors that could mediate both central and peripheral manifestations of AD. Despite efforts to strictly define AD as a homogeneous CNS disease, there may be no single etiologic pathway leading to the syndrome of AD dementia. Rather, the neurodegenerative process may involve some degree of baseline genetic risk that is modified by external risk factors. Continued research into the diverse but related processes linked to AD risk is necessary for successful development of disease -modifying therapies.
    Full-text · Article · Apr 2014 · Biochimica et Biophysica Acta
  • Source
    • "Interestingly, a relationship between BMI and AD neuropathology has also been observed in cognitively-normal elderly subjects. We and others have shown that neuropathological changes of AD found at autopsy are associated with low and declining body mass index (BMI) [128] [129] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although Alzheimer’s Disease (AD) is the most common neurodegenerative disease, the etiology of AD is not well understood. In some cases, genetic factors explain AD risk, but a high percentage of late-onset AD is unexplained. The fact that AD is associated with a number of physical and systemic manifestations suggests that AD is a multifactorial disease that affects both the CNS and periphery. Interestingly, a common feature of many systemic processes linked to AD is involvement in energy metabolism. The goals of this review are to 1) explore the evidence that peripheral processes contribute to AD risk, 2) explore ways that AD modulates whole-body changes, and 3) discuss the role of genetics, mitochondria, and vascular mechanisms as underlying factors that could mediate both central and peripheral manifestations of AD. Despite efforts to strictly define AD as a homogeneous CNS disease, there may be no single etiologic pathway leading to the syndrome of AD dementia. Rather, the neurodegenerative process may involve some degree of baseline genetic risk that is modified by external risk factors. Continued research into the diverse but related processes linked to AD risk is necessary for successful development of disease –modifying therapies.
    Full-text · Article · Jan 2014 · Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
  • Source
    • "Genes expressed by cells in the HPA axis control behaviors such as mood, sleep, and eating and these behaviors are commonly disrupted in AD patients. For instance, systemic metabolic changes as well as mood changes have been observed in very early phases of AD and suggest early dysfunction in the hypothalamus [55-57]. Another change seen in AD patients is a behavioral one, affecting mood and depression [63-66]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease affects more than 35 million people worldwide but there is no known cure. Age is the strongest risk factor for Alzheimer's disease but it is not clear how age-related changes impact the disease. Here, we used a mouse model of Alzheimer's disease to identify age-specific changes that occur prior to and at the onset of traditional Alzheimer-related phenotypes including amyloid plaque formation. To identify these early events we used transcriptional profiling of mouse brains combined with computational approaches including singular value decomposition and hierarchical clustering. Our study identifies three key events in early stages of Alzheimer's disease. First, the most important drivers of Alzheimer's disease onset in these mice are age-specific changes. These include perturbations of the ribosome and oxidative phosphorylation pathways. Second, the earliest detectable disease-specific changes occur to genes commonly associated with the hypothalamic-adrenal-pituitary (HPA) axis. These include the down-regulation of genes relating to metabolism, depression and appetite. Finally, insulin signaling, in particular the down-regulation of the insulin receptor substrate 4 (Irs4) gene, may be an important event in the transition from age-related changes to Alzheimer's disease specific-changes. A combination of transcriptional profiling combined with computational analyses has uncovered novel features relevant to Alzheimer's disease in a widely used mouse model and offers avenues for further exploration into early stages of AD.
    Full-text · Article · Nov 2013 · BMC Genomics
Show more