Longitudinal relationship of early life immunomodulatory T cell phenotype and function to development of allergic sensitization in an urban cohort

Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
Clinical & Experimental Allergy (Impact Factor: 4.77). 11/2011; 42(3):392-404. DOI: 10.1111/j.1365-2222.2011.03882.x
Source: PubMed


Immunomodulatory T cells are thought to influence development of allergy and asthma, but early life longitudinal data on their phenotype and function are lacking.
As part of the Urban Environment and Childhood Asthma (URECA) study, we investigated the development of immunomodulatory T cell phenotype and function, and characterized their relation to allergic disease progression from birth through to 2 years of age.
Immunomodulatory T cell phenotype and function in cord blood mononuclear cells (CBMC) and peripheral blood mononuclear cells (PBMC) at 1 and 2 years of age were characterized by analysing CD25(bright) and FoxP3(+) expression, proliferative responses and cytokine production. The relation of immunomodulatory T cell characteristics to allergic sensitization and disease at 1- and 2-years of age was investigated.
The proportion of CD4(+)CD25(bright) and CD4(+)CD25(+)FoxP3(+)T cells (n = 114, 83, 82 at birth, 1- and 2-years respectively) increased significantly, whereas there were no significant changes in the suppressive function of CD25(+)T cells (n = 78, 71, 81 at birth, 1- and 2-years respectively). Birth immunomodulatory T cell characteristics were not related to subsequent allergic sensitization or disease. However, increases in the numbers of CD4(+)CD25(bright) cells and their ability to suppress lymphoproliferative responses at 1 year of age were associated with reduced allergic sensitization at 1 (P = 0.03) and 2 (P = 0.02) years of age. Production of the anti-inflammatory cytokine IL-10 by CD25(+)T cells appeared to mediate this protective suppressive function. In contrast, by 2 years of age, we observed the emergence of a positive association of CD4(+)CD25(+) FoxP3(+) T cell numbers with allergic sensitization (P = 0.05) and eczema (P = 0.02).
These findings suggest that the relationship between immunomodulatory T cell subsets, allergic sensitization and eczema is developmentally regulated. In the first year of life, CD4(+)CD25(+) IL-10 producing T cells are associated with a reduced incidence of allergic sensitization. Once allergic sensitization or eczema is established, CD4(+)CD25(+)FoxP3(+)T-reg cells expand to potentially counteract the allergic inflammatory response. Understanding the relationship between development of immunoregulatory T cells and early onset atopy could lead to new preventive strategies for allergic diseases.

Download full-text


Available from: Marina Tuzova, Aug 27, 2014
  • Source
    • "Indeed, in healthy (nonatopic) individuals T cell polarization occurs in contact with environmental allergens but higher levels of Tregs dampen the effect of Th2 cells, leading to peripheral tolerance [156]. Tregs modulate the activity of Th2 (and Th1) cells via several mechanisms including the secretion of anti-inflammatory cytokines such as IL-10 and TGF-β [155, 157]. As the description and role of other recently identified T-helper cells is clarified (e.g., Th17 cells shown to be important in nonatopic asthma) regulation of Th2 mediated responses will also become clearer [158]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Several field studies have reported an inverse relationship between the prevalence of helminth infections and that of allergic sensitisation/atopy. Recent studies show that immune responses induced by helminth parasites are, to an extent, comparable to allergic sensitisation. However, helminth products induce regulatory responses capable of inhibiting not only antiparasite immune responses, but also allergic sensitisation. The relative effects of this immunomodulation on the development of protective schistosome-specific responses in humans has yet to be demonstrated at population level, and the clinical significance of immunomodulation of allergic disease is still controversial. Nonetheless, similarities in immune responses against helminths and allergens pose interesting mechanistic and evolutionary questions. This paper examines the epidemiology, biology and immunology of allergic sensitisation/atopy, and schistosome infection in human populations.
    Full-text · Article · Aug 2012 · Journal of Parasitology Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: In 2010 over 200 articles were published in Clinical and Experimental Allergy including editorials, reviews, opinion articles, letters, book reviews and of course at the heart of the journal, papers containing original data which have moved the field of allergy forward on a number of fronts. For the third year running the editors felt it would be of value to summarize the key messages contained in these papers as a snapshot of where the cutting edge of research into allergic disease is leading. We have broadly followed the sections of the journal, although this year the mechanistic articles are grouped together and the studies involving experimental models of disease are discussed throughout the paper. In the field of asthma and rhinitis phenotypes and biomarkers continue to a major pre-occupation of our authors. There is continued interest in mechanisms of inflammation and disordered lung function with the mouse model of asthma continuing to offer new insights. There is also a steady flow of papers investigating new therapies, including those derived from plants and herbs, although many are mechanistic with too few high quality clinical trials. The mechanisms involved in allergic disease are well covered with many strong papers using clinical material to ask relevant questions. Pro-pre and snybiotics continue to be of major interest to our authors and this remains a controversial and complicated field. The discipline of epidemiology has retained its interest in risk factors for the development of allergic disease with a view to refining and debating the reasons for the allergy epidemic. There is continued interest in the relationship between helminthic disease and allergy with a new twist in 2010 involving studies using infection with helminths as a potential treatment. The genetics of allergic disease continues to be very productive, although the field has moved on from only investigating single nucleotide polymorphisms of candidate genes to Genome Wide Association Studies and an increasing and welcome emphasis on gene-environment interactions. In the field of clinical allergy there is steady flow of papers describing patterns of drug allergy with renewed interest in reactions to contrast media, but food allergy is the major area of interest in this section of the journal. Lastly in the field of allergens there is a growing interest in the role of component resolved diagnosis in improving the diagnosis and management of allergic disease. Another excellent year, full of fascinating and high quality work, which the journal has been proud to bring to the allergy community.
    No preview · Article · Dec 2011 · Clinical & Experimental Allergy
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: In addition to genetic risk, environmental factors might influence coeliac disease (CD) development. We sought to assess the effect of the interaction between milk-feeding practices and the HLA-DQ genotype on peripheral lymphocyte subsets and their activation markers in infants at familial risk for CD. METHODS: 170 newborns were classified in 3 different genetic risk groups (high risk, HR; intermediate risk, IR; and low risk, LR) after DQB1 and DQA1 typing. Lymphocyte subsets were studied at the age of 4 months by flow cytometry analysis. RESULTS: 79 infants were receiving exclusive breastfeeding (BF) and 91 partial breastfeeding or formula feeding (FF). Regarding genetic risk, 40 infants were classified in HR group, 75 in IR group and 55 in LR group. Two-way ANOVA did not show significant interactions between the type of milk feeding and genetic risk group on the lymphocyte subsets analysed. One-way ANOVA for milk-feeding practice alone showed that the percentage of CD4 + CD25+ cells was significantly higher in BF group than in FF group (BF, 10.92 ± 2.71; FF, 9.94 ± 2.96; p = 0.026), and absolute counts of CD4 + CD38+ cells were significantly higher in FF group than in BF group (FF, 2,881.23 ± 973.48; BF, 2,557.95 ± 977.06; p = 0.038). One-way ANOVA for genetic risk alone showed that absolute counts of NK cells were significantly higher in IR group than HR and LR groups (IR, 539.24 ± 340.63; HR, 405.01 ± 239.53; LR, 419.86 ± 262.85; p = 0.028). CONCLUSION: Lymphocyte subset profiles in the early stages of life could be modulated by milk-feeding practices and genetic risk separately. Breastfeeding might have a positive immunomodulatory effect on lymphocyte subsets in infants at risk of CD.
    No preview · Article · May 2012 · European Journal of Nutrition
Show more