Hepatitis C Virus Fails To Activate NF-κB Signaling in Plasmacytoid Dendritic Cells

Institut National de la Santé et de la Recherche Médicale (Inserm) UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille, France.
Journal of Virology (Impact Factor: 4.44). 11/2011; 86(2):1090-6. DOI: 10.1128/JVI.05444-11
Source: PubMed


Plasmacytoid dendritic cells (pDCs) respond to viral infection by production of alpha interferon (IFN-α), proinflammatory cytokines, and cell differentiation. The elimination of hepatitis C virus (HCV) in more than 50% of chronically infected patients by treatment with IFN-α suggests that pDCs can play an important role in the control of HCV infection. pDCs exposed to HCV-infected hepatoma cells, in contrast to cell-free HCV virions, produce large amounts of IFN-α. To further investigate the molecular mechanism of HCV sensing, we studied whether exposure of pDCs to HCV-infected hepatoma cells activates, in parallel to interferon regulatory factor 7 (IRF7)-mediated production of IFN-α, nuclear factor kappa B (NF-κB)-dependent pDC responses, such as expression of the differentiation markers CD40, CCR7, CD86, and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and secretion of the proinflammatory cytokines TNF-α and interleukin 6 (IL-6). We demonstrate that exposure of pDCs to HCV-infected hepatoma cells surprisingly did not induce phosphorylation of NF-κB or cell surface expression of CD40, CCR7, CD86, or TRAIL or secretion of TNF-α and IL-6. In contrast, CpG-A and CpG-B induced production of TNF-α and IL-6 in pDCs exposed to the HCV-infected hepatoma cells, showing that cell-associated virus did not actively inhibit Toll-like receptor (TLR)-mediated NF-κB phosphorylation. Our results suggest that cell-associated HCV signals in pDCs via an endocytosis-dependent mechanism and IRF7 but not via the NF-κB pathway. In spite of IFN-α induction, cell-associated HCV does not induce a full functional response of pDCs. These findings contribute to the understanding of evasion of immune responses by HCV.

Download full-text


Available from: Jacques A Nunès, Mar 06, 2015
  • Source
    • "Although we found that HCV virions did not activate the inflammasome in hepatoma cell lines or myeloid cells, we believe that some components instead of the HCV virion particle itself could activate the inflammasome, because several reports showed high plasma levels of IL-18 and IL-1β in HCV infected patients [8], [11]–[15]. Since HCV RNA is a well known PAMP in vivo and in vitro [4], [32], [36], we evaluated the ability of HCV RNA in triggering inflammasome activation in THP-1 derived macrophages. We transfected HCV RNA obtained from in vitro transcription into macrophages, followed with IL-1β assay. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated plasma levels of IL-1β and IL-18 from patients with hepatitis C virus (HCV) infection indicate a possible activation of inflammasome by HCV. To demonstrate whether HCV infection activates the inflammasome, we investigated inflammasome activation from HCV infected hepatic Huh7 cells, or monocytic cells and THP-1 derived macrophages challenged with HCV virions, but no any inflammasome activation was detected in these cells. However, when we transfected HCV genomic RNA into monocytes or macrophages, IL-1β was secreted in a dose-dependent manner. We also detected ASC oligomerization and caspase-1 cleavage in HCV RNA transfected macrophages. Using shRNA-mediated gene silencing or specific inhibitors, we found that HCV RNA-induced IL-1β secretion was dependent on the presence of inflammasome components such as NLRP3, ASC and caspase-1. Furthermore, we also found that RIG-I was dispensable for HCV RNA-induced NLRP3 inflammasome activation, while reactive oxygen species (ROS) production was required. Our results indicate that HCV RNA activates the NLRP3 inflammasome in a ROS-dependent manner, and RIG-I is not required for this process.
    Full-text · Article · Jan 2014 · PLoS ONE
  • Source
    • "Viral infection Impaired maturation/function (Virus-dependent) Downregulation of CD1a, CD1b, DC-SIGN, CD80, CD83, CD86 IFNα, IL-10, IL-1β (missing IL-12, IL-6, TNFα secretion) Kruse et al., 2000; Sarobe et al., 2003; Smed-Sorensen et al., 2004; Martinson et al., 2007; Tilton et al., 2008; Harman et al., 2011; Chentoufi et al., 2012; Dental et al., 2012; Tu et al., 2012 "
    [Show abstract] [Hide abstract]
    ABSTRACT: The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation versus tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34+ stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory dendritic cells in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic
    Full-text · Article · Sep 2012 · Frontiers in Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are immunological sentinels of the organism acting as antigen-presenting cells (APC) and are critical for induction of innate and adaptive immunity. Traditionally they are divided in myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs), a rare population of circulating cells that selectively express Toll-like receptors (TLR) 7 and TLR9 and have the capacity to produce large amounts of type I interferons (IFNs) in response to pathogenic agents or danger signals. It has been demonstrated that pDCs can coordinate events during the course of viral infections, allergic and autoimmune diseases and cancer. Through the production of type I IFNs, pDCs initiate protective immunity by activating classical DCs, T cells, natural killer cells and B cells. Upon activation, pDCs also differentiate into mature DCs and may contribute to the contraction of T-cell response. Human pDCs preferentially express immunoglobulin-like transcript 7 (ILT7; LILRA4), which couples with a signaling adapter to activate a prominent immune-receptor tyrosine-based activation motif (ITAM)-mediated signaling pathway. The interaction between ILT7 and bone marrow stromal cell antigen 2 (BST2, CD317) assures an appropriate TLR response by pDCs during viral infections and likely participates in pDCs tumor crosstalk. Moreover these cells seem to play a crucial role in the initiation of the pathological process of autoimmune diseases such as lupus or psoriasis. Despite the fact that their function within a tumor context is still controversial they represent an attractive target for therapeutic manipulation of the immune system to elicit a powerful immune response against tumor antigens in combination with other therapies.
    No preview · Article · May 2012 · Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
Show more