Biomarkers predicting tumor response and evasion to anti-angiogenic therapy

Brain Tumor Research Center, USA.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 10/2011; 1825(1):86-100. DOI: 10.1016/j.bbcan.2011.10.004
Source: PubMed


No fully validated biological markers currently exist to predict responsiveness to or the development of evasion to anti-angiogenic therapy of cancer. The identification of such biomarkers is vital to move these therapies forward, as failure to respond to these treatments is often associated with rapid tumor progression that could have been averted had the intrinsic or acquired evasion to anti-angiogenic therapy been identified in a timely fashion. Furthermore, the high cost of antiangiogenic therapies makes it important to avoid utilizing them in the setting of lack of response or developing evasion, making the identification of biomarkers even more important. A number of potential physiologic, circulating, tissue, and imaging biomarkers have emerged from recently completed preclinical animal studies and clinical trials. In this review, we define 5 different types of biomarkers (physiologic, circulating, intratumoral, genetic polymorphisms, and radiographic); discuss the challenges in establishing biomarkers of antiangiogenic therapy in animal models and in clinical trials; and discuss future strategies to identify and validate biomarkers of anti-angiogenic therapy.

15 Reads
  • Source
    • "One of the major problems during anti-VEGF treatment seems to be tumor evasion from VEGF blockage that may involve several complex escape mecha-nisms [12,13,19,20] including activation of other pro-angiogenic factors such as the fibroblast-growth factor (FGF) and/ or the platelet-derived growth factor (PDGF) system [12,13,19-21]. The PDGF and FGF systems are believed to interact mutually [22] and contribute with different effects to angiogenesis and the tumor microenvironment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Anti-VEGF treatment has proven effective in recurrent ovarian cancer. However, the identification of the patients most likely to respond is still pending. It is well known that the angiogenesis is regulated by several other pro-angiogenic proteins, e.g. the platelet - derived growth factor (PDGF) system and the fibroblast growth factor (FGF) system. These other signaling pathways may remain active or become upregulated during anti-VEGF treatment. The aim of the present study was to investigate if potential changes of PDGF-BB, PDGF-AA, and FGF2 before and during bevacizumab treatment had predictive value for early progression or survival. Furthermore, we wanted to investigate the importance of serum VEGF in the same cohort. Methods This study included 106 patients with chemotherapy-resistant epithelial ovarian cancer who were treated with single agent bevacizumab as part of a biomarker protocol. Patients were evaluated for response by the Response Evaluation Criteria In Solid Tumors (RECIST) and/ or Gynecologic Cancer Intergroup (GCIG) CA125 criteria. Serum samples were collected at baseline and prior to each treatment. FGF2, PDGF-BB, PDGF-AA were quantified simultaneously using the Luminex system, and VEGF-A was measured by ELISA. Eighty-eight baseline samples were avaliable for FGF2, PDGF-BB, PDGF-AA analysis, and 93 baseline samples for VEGF. Results High baseline serum VEGF was related to poor overall survival. Furthermore, high serum PDGF-BB and FGF2 was of prognostic significance. None of the markers showed predictive value, neither at baseline level nor during the treatment.
    Full-text · Article · Sep 2012 · Journal of Ovarian Research
  • Source
    • "To identify predictive biomarkers for anti-angiogenic therapy, various imaging techniques are being examined, including perfusion imaging in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) (43,44). Several clinical trials have shown a decrease in tumor perfusion in response to anti-angiogenic treatment (45). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanistic dissociation of 'tumor starvation' versus 'vascular normalization' following anti-angiogenic therapy is a subject of intense controversy in the field of experimental research. In addition, accurately evaluating changes of the tumor microenvironment after anti-angiogenic therapy is important for optimizing treatment strategy. Sorafenib has considerable anti-angiogenic effects that lead to tumor starvation and induce tumor hypoxia in the highly vascularized renal cell carcinoma (RCC) xenografts. 18F-fluoromisonidazole (18F‑FMISO) is a proven hypoxia imaging probe. Thus, to clarify early changes in the tumor microenvironment following anti-angiogenic therapy and whether 18F-FMISO imaging can detect those changes, we evaluated early changes in the tumor microenvironment after sorafenib treatment in an RCC xenograft by sequential histological analysis and 18F-FMISO autoradiography (ARG). A human RCC xenograft (A498) was established in nude mice, for histological studies and ARG, and further assigned to the control and sorafenib-treated groups (80 mg/kg, per os). Mice were sacrificed on Days 1, 2, 3 and 7 in the histological study, and on Days 3 and 7 in ARG after sorafenib treatment. Tumor volume was measured every day. 18F-FMISO and pimonidazole were injected intravenously 4 and 2 h before sacrifice, respectively. Tumor sections were stained with hematoxylin and eosin and immunohistochemically with pimonidazole and CD31. Intratumoral 18F-FMISO distribution was quantified in ARG. Tumor volume did not significantly change on Day 7 after sorafenib treatment. In the histological study, hypoxic fraction significantly increased on Day 2, mean vessel density significantly decreased on Day 1 and necrosis area significantly increased on Day 2 after sorafenib treatment. Intratumoral 18F-FMISO distribution significantly increased on Days 3 (10.2-fold, p<0.01) and 7 (4.1-fold, p<0.01) after sorafenib treatment. The sequential histological evaluation of the tumor microenvironment clarified tumor starvation in A498 xenografts treated with sorafenib. 18F-FMISO hypoxia imaging confirmed the tumor starvation. 18F-FMISO PET may contribute to determine an optimum treatment protocol after anti-angiogenic therapy.
    Full-text · Article · Sep 2012 · International Journal of Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of angiogenesis is a hallmark of glioblastoma (GBM). Vascular endothelial growth factor (VEGF), which drives angiogenesis, provides an additional target for conventional therapy. The authors conducted a prospective clinical trial to test the effectiveness of bevacizumab, an inhibitor of VEGF, in newly diagnosed GBM. From 2006 through 2010, 51 eligible patients with newly diagnosed GBM were treated with involved-field radiation therapy and concomitant temozolomide (75 mg/m(2) daily for 42 days) along with bevacizumab (10 mg/kg every 2 weeks), starting 29 days after surgery. This was followed by 6 cycles of adjuvant temozolomide therapy (150 mg/m(2) on Days 1-7 of a 28-day cycle) with bevacizumab administered at 10 mg/kg on Days 8 and 22 of each 28-day cycle. The 6- and 12-month progression-free survival (PFS) rates were 85.1% and 51%, respectively. The 12- and 24-month overall survival (OS) rates were 85.1% and 42.5%, respectively. Grade III/IV toxicities were noted in 10 patients (19.6%). No treatment-related deaths were observed. Asymptomatic intracranial bleeding was noted in 5 patients. The addition of bevacizumab to conventional therapy in newly diagnosed GBM appears to improve both PFS and OS in patients with newly diagnosed GBM, with acceptable morbidity. A shift toward diffuse relapse was noted in a significant number of patients. Ongoing Phase III clinical trials will show the true benefit of this antiangiogenic approach.
    Preview · Article · Feb 2012 · Journal of Neurosurgery
Show more