Article

Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells. Neuroscience

Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21949-590 Rio de Janeiro, Brazil.
Neuroscience (Impact Factor: 3.36). 10/2011; 200:130-41. DOI: 10.1016/j.neuroscience.2011.10.025
Source: PubMed

ABSTRACT

Microglial activation is a key event in the progression and infiltration of tumors. We have previously demonstrated that the co-chaperone stress inducible protein 1 (STI1), a cellular prion protein (PrP(C)) ligand, promotes glioblastoma (GBM) proliferation. In the present study, we examined the influence of microglial STI1 in the growth and invasion of the human glioblastoma cell line GBM95. We demonstrated that soluble factors secreted by microglia into the culture medium (microglia conditioned medium; MG CM) caused a two-fold increase in the proliferation of GBM95 cells. This effect was reversed when STI1 was removed from the MG CM. In this context, we have shown that microglial cells synthesize and secrete STI1. Interestingly, no difference was observed in proliferation rates when GBM cells were maintained in MG CM or MG CM containing an anti-PrP(C) neutralizing antibody. Moreover, rec STI1 and rec STI1(Δ230-245), which lack the PrP(C) binding site, both promoted similar levels of GBM95 proliferation. In the migration assays, MG CM favored the migration of GBM95 cells, but migration failed when STI1 was removed from the MG CM. We detected metalloproteinase 9 (MMP-9) activity in the MG CM, and when cultured microglia were treated with an anti-STI1 antibody, MMP-9 activity decreased. Our results suggest that STI1 is secreted by microglia and favors tumor growth and invasion through the participation of MMP-9 in a PrP(C)-independent manner.

Download full-text

Full-text

Available from: Anna Carolina Carvalho da Fonseca
  • Source
    • "Moreover, numerous studies have revealed critical roles for microglia in high-grade glioma growth and progression. In these studies, microglia produce factors (gliomagens) that increase the growth and migration of glioma cells [10] [11] [12]. Importantly, pharmacological or genetic disruption of microglia function in mouse high-grade glioma models results in attenuated tumor growth and progression [13] [14] [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Solid cancers develop within a supportive microenvironment that promotes tumor formation and growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), we have previously demonstrated that microglia are essential for glioma formation and maintenance. To identify potential tumor-associated microglial factors that support glioma growth (gliomagens), we initiated a comprehensive large-scale discovery effort using optimized RNA-sequencing methods focused specifically on glioma-associated microglia. Candidate microglial gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative real-time polymerase chain reaction as well as by RNA fluorescence in situ hybridization following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, chemokine (C-C motif) ligand 5 (Ccl5) was identified as a chemokine highly expressed in genetically engineered Nf1 mouse optic gliomas relative to nonneoplastic optic nerves. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, treatment with Ccl5 neutralizing antibodies reduced Nf1 mouse optic glioma growth and improved retinal dysfunction in vivo. Collectively, these findings establish Ccl5 as an important microglial growth factor for low-grade glioma maintenance relevant to the development of future stroma-targeted brain tumor therapies.
    Full-text · Article · Oct 2015 · Neoplasia (New York, N.Y.)
  • Source
    • "It is currently accepted that GBMs can also be derived from tumor stem cells. As said before, GBMs are heterogeneous, due to the presence of non-tumor cells such as astrocytes, microglial cells and endothelial cells (Fonseca et al., 2012; Kahn et al., 2012; Lima et al., 2012). Endogenous, non-tumoral, neural stem cells are able to migrate from the subventricular zone (SVZ) toward glial brain tumors, damaged or regenerating tissue, and inflammation sites (Aboody et al., 2000; Tang et al., 2003; Synowitz et al., 2006; Walzlein et al., 2008; Díaz-Coránguez et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB). By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM), characterized by a highly heterogeneous cell population (including tumor stem cells), extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the BBB and the concerns that arise when this barrier is affected.
    Full-text · Article · Dec 2014 · Frontiers in Cellular Neuroscience
  • Source
    • "Another GAM-associated mechanism, the CX3CR1/CX3CL1 interaction, can also induce MMPs production resulting in glioma invasion [64]. A recently described factor, STI1 (cochaperone stress inducible factor 1) secreted by microglia was shown to favor tumor growth and invasion through the participation of MMP-9 [65]. Thus, glioma cells stimulate microglia to increase the breakdown of extracellular matrix, thereby, promoting glioma invasion. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant gliomas contain stroma and a variety of immune cells including abundant activated microglia/macrophages. Mounting evidence indicates that the glioma microenvironment converts the glioma-associated microglia/macrophages (GAMs) into glioma-supportive, immunosuppressive cells; however, GAMs can retain intrinsic anti-tumor properties. Here, we review and discuss this duality and the potential therapeutic strategies that may inhibit their glioma-supportive and propagating functions.
    Full-text · Article · Jul 2013 · Clinical and Developmental Immunology
Show more