Glucocorticoid-induced TNF receptor-triggered T cells are key modulators for survival/death of neural stem/progenitor cells induced by ischemic stroke

Laboratory of Neurogenesis and CNS Repair, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan.
Cell death and differentiation (Impact Factor: 8.18). 11/2011; 19(5):756-67. DOI: 10.1038/cdd.2011.145
Source: PubMed


Increasing evidences show that immune response affects the reparative mechanisms in injured brain. Recently, we have demonstrated that CD4(+)T cells serve as negative modulators in neurogenesis after stroke, but the mechanistic detail remains unclear. Glucocorticoid-induced tumor necrosis factor (TNF) receptor (GITR), a multifaceted regulator of immunity belonging to the TNF receptor superfamily, is expressed on activated CD4(+)T cells. Herein, we show, by using a murine model of cortical infarction, that GITR triggering on CD4(+)T cells increases poststroke inflammation and decreases the number of neural stem/progenitor cells induced by ischemia (iNSPCs). CD4(+)GITR(+)T cells were preferentially accumulated at the postischemic cortex, and mice treated with GITR-stimulating antibody augmented poststroke inflammatory responses with enhanced apoptosis of iNSPCs. In contrast, blocking the GITR-GITR ligand (GITRL) interaction by GITR-Fc fusion protein abrogated inflammation and suppressed apoptosis of iNSPCs. Moreover, GITR-stimulated T cells caused apoptosis of the iNSPCs, and administration of GITR-stimulated T cells to poststroke severe combined immunodeficient mice significantly reduced iNSPC number compared with that of non-stimulated T cells. These observations indicate that among the CD4(+)T cells, GITR(+)CD4(+)T cells are major deteriorating modulators of poststroke neurogenesis. This suggests that blockade of the GITR-GITRL interaction may be a novel immune-based therapy in stroke.

  • Source
    • "Data are, however, scarce and inconsistent. Takata et al. [44] found that the amount of T-cells peaked 6 hours after pMCAO, while the other pMCAO studies observed T-cells peaking at later time points [34,41,45]. A couple of studies investigated the influx of T-helper (Th) and cytotoxic T-cell subsets following stroke (Table 5). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Stroke is one of the leading causes of death worldwide. At present, the only available treatment is thrombolysis, which should be initiated no later than 4.5 hours after onset of symptoms. Several studies have shown that an attenuation of the inflammatory response in relation to stroke could widen the therapeutic window. However, the immune system has important functions following infarction, such as removal of dead cells and the subsequent astrocytosis as well as prevention of post-ischemic infection. Hence, detailed knowledge concerning the temporal profile of leukocyte infiltration is necessary in order to develop new and effective treatments. The purpose of this review is to determine the temporal profile of leukocyte (neutrophil granulocytes, macrophages and T-cells) infiltration following experimental stroke. We found that the number of neutrophil granulocytes peaks between day 1 and 3 after experimental stroke, with short occlusion times (30 and 60 minutes of middle cerebral artery occlusion (MCAO)) leading to a later peak in response (P <0.001). Macrophages/microglia were found to peak later than day 3 and stay in the infarcted area for longer time periods, whereas duration of occlusion had no influence on the temporal infiltration (P = 0.475). Studies on T-cell infiltration are few; however, a tendency towards infiltration peak at later time points (from day 4 onwards) was seen. This review provides a framework for the instigation of post-stroke anti-inflammatory treatment, which could prove beneficial and widen the therapeutic window compared to current treatment options.
    Full-text · Article · Sep 2013 · Journal of Neuroinflammation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence indicates that neural stem/progenitor cells (NSPCs) reside in many regions of the central nervous system (CNS), including the subventricular zone (SVZ) of the lateral ventricle, subgranular zone of the hippocampal dentate gyrus, cortex, striatum, and spinal cord. Using a murine model of cortical infarction, we recently demonstrated that the leptomeninges (pia mater), which cover the entire cortex, also exhibit NSPC activity in response to ischemia. Pial-ischemia-induced NSPCs expressed NSPC markers such as nestin, formed neurosphere-like cell clusters with self-renewal activity, and differentiated into neurons, astrocytes, and oligodendrocytes, although they were not identical to previously reported NSPCs, such as SVZ astrocytes, ependymal cells, oligodendrocyte precursor cells, and reactive astrocytes. In this study, we showed that leptomeningeal cells in the poststroke brain express the immature neuronal marker doublecortin as well as nestin. We also showed that these cells can migrate into the poststroke cortex. Thus, the leptomeninges may participate in CNS repair in response to brain injury.
    No preview · Article · Feb 2012 · Stem cells and development
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic or intracerebral delivery of neural stem and progenitor cells (NSPCs) and activation of endogenous NSPCs hold much promise as potential treatments for diseases in the human CNS. Recent studies have shed new light on the interaction between the NSPCs and cells belonging to the innate and adaptive arms of the immune system. According to these studies, the immune cells can be both beneficial and detrimental for cell genesis from grafted and endogenous NSPCs in the CNS, and the NSPCs exert their beneficial effects not only by cell replacement but also by immunomodulation and trophic support. The cross-talk between immune cells and NSPCs and their progeny seems to determine both the efficacy of endogenous regenerative responses and the mechanism of action as well as the fate and functional integration of grafted NSPCs. Better understanding of the dialog between NSPCs and innate and adaptive immune cells is crucial for further development of effective strategies for CNS repair.
    No preview · Article · Jul 2012 · Nature Neuroscience
Show more