Quantifying Cognitive Decrements Caused by Cranial Radiotherapy

Department of Radiation Oncology, University of California Irvine, USA.
Journal of Visualized Experiments (Impact Factor: 1.33). 10/2011; 56(56). DOI: 10.3791/3108
Source: PubMed


With the exception of survival, cognitive impairment stemming from the clinical management of cancer is a major factor dictating therapeutic outcome. For many patients afflicted with CNS and non-CNS malignancies, radiotherapy and chemotherapy offer the best options for disease control. These treatments however come at a cost, and nearly all cancer survivors (~11 million in the US alone as of 2006) incur some risk for developing cognitive dysfunction, with the most severe cases found in patients subjected to cranial radiotherapy (~200,000/yr) for the control of primary and metastatic brain tumors1. Particularly problematic are pediatric cases, whose long-term survival plagued with marked cognitive decrements results in significant socioeconomic burdens2. To date, there are still no satisfactory solutions to this significant clinical problem.
We have addressed this serious health concern using transplanted stem cells to combat radiation-induced cognitive decline in athymic rats subjected to cranial irradiation3. Details of the stereotaxic irradiation and the in vitro culturing and transplantation of human neural stem cells (hNSCs) can be found in our companion paper (Acharya et al., JoVE reference). Following irradiation and transplantation surgery, rats are then assessed for changes in cognition, grafted cell survival and expression of differentiation-specific markers 1 and 4-months after irradiation. To critically evaluate the success or failure of any potential intervention designed to ameliorate radiation-induced cognitive sequelae, a rigorous series of quantitative cognitive tasks must be performed. To accomplish this, we subject our animals to a suite of cognitive testing paradigms including novel place recognition, water maze, elevated plus maze and fear conditioning, in order to quantify hippocampal and non-hippocampal learning and memory. We have demonstrated the utility of these tests for quantifying specific types of cognitive decrements in irradiated animals, and used them to show that animals engrafted with hNSCs exhibit significant improvements in cognitive function3.
The cognitive benefits derived from engrafted human stem cells suggest that similar strategies may one day provide much needed clinical recourse to cancer survivors suffering from impaired cognition. Accordingly, we have provided written and visual documentation of the critical steps used in our cognitive testing paradigms to facilitate the translation of our promising results into the clinic.

Download full-text


Available from: Munjal M. Acharya, Feb 26, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cranial irradiation is an effective treatment modality for both primary and metastatic brain tumors, yet it induces cognitive decline in a substantial number of patients. At present, there are no established methods for neuroprotection. Recent investigations have revealed a link between radiation-induced cognitive dysfunction and the loss of neural precursor cells in the hippocampus. Hence, identifying pharmacological agents, capable of protecting this cell population, is of interest. FTY720 (fingolimod), an FDA-approved oral drug for the treatment of multiple sclerosis, has been shown to promote the survival and differentiation of neural progenitors, as well as remyelination and repair after brain injury. In this study, we show that FTY720, used at nanomolar concentrations, is capable of increasing the viability and neurogenicity of irradiated neural stem cells from the hippocampus. In contrast, it does not provide radioprotection in a human breast cancer cell line and two glioma cell lines. These results suggest a potential therapeutic role for FTY720 as a neuroprotector during cranial irradiation. Further preclinical studies are warranted to evaluate this possibility.
    No preview · Article · Apr 2012 · Neuroscience Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment of central nervous system (CNS) malignancies typically involves radiotherapy to forestall tumor growth and recurrence following surgical resection. Despite the many benefits of cranial radiotherapy, survivors often suffer from a wide range of debilitating and progressive cognitive deficits. Thus, while patients afflicted with primary and secondary malignancies of the CNS now experience longer local regional control and progression-free survival, there remains no clinical recourse for the unintended neurocognitive sequelae associated with their cancer treatments. Multiple mechanisms contribute to disrupted cognition following irradiation, including the depletion of radiosensitive populations of stem and progenitor cells in the hippocampus. We have explored the potential of using intrahippocampal transplantation of human stem cells to ameliorate radiation-induced cognitive dysfunction. Past studies demonstrated the capability of cranially transplanted human embryonic (hESCs) and neural (hNSCs) stem cells to functionally restore cognition in rats 1 and 4 months after cranial irradiation. The present study employed an FDA-approved fetal-derived hNSC line capable of large scale-up under good manufacturing practice (GMP). Animals receiving cranial transplantation of these cells 1 month following irradiation showed improved hippocampal spatial memory and contextual fear conditioning performance compared to irradiated, sham surgery controls. Significant newly born (doublecortin positive) neurons and a smaller fraction of glial subtypes were observed within and nearby the transplantation core. Engrafted cells migrated and differentiated into neuronal and glial subtypes throughout the CA1 and CA3 subfields of the host hippocampus. These studies expand our prior findings to demonstrate that transplantation of fetal-derived hNSCs improves cognitive deficits in irradiated animals, as assessed by two separate cognitive tasks.
    Full-text · Article · Jul 2013 · Cell Transplantation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain development progresses through a series of stages beginning with neurogenesis and progressing to neural migration, maturation, synaptogenesis, pruning, and myelin formation. This review examines the literature on how early experiences alter brain development, including environmental events such as sensory stimuli, early stress, psychoactive drugs, parent-child relationships, peer relationships, intestinal flora, diet, and radiation. This sensitivity of the brain to early experiences has important implications for understanding neurodevelopmental disorders as well as the effect of medical interventions in children. Pediatr Blood Cancer © 2013 Wiley Periodicals, Inc.
    Full-text · Article · Oct 2014 · Pediatric Blood & Cancer
Show more