Plasmonics Goes Quantum

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T5K2M3, Canada.
Science (Impact Factor: 33.61). 10/2011; 334(6055):463-4. DOI: 10.1126/science.1211736
Source: PubMed


A combined plasmonics and metamaterials approach may allow light-matter interaction to be controlled at the single-photon level.

Download full-text


Available from: Zubin Jacob, Jan 08, 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of cavity quantum electrodynamics (QED), caused by the interaction of matter and the electromagnetic field in subwavelength resonant structures, have been the subject of intense research in recent years. The generation of coherent radiation by subwavelength resonant structures has attracted considerable interest, not only as a means of exploring the QED effects that emerge at small volume, but also for its potential in applications ranging from on-chip optical communication to ultrahigh-resolution and high-throughput imaging, sensing and spectroscopy. One such strand of research is aimed at developing the 'ultimate' nanolaser: a scalable, low-threshold, efficient source of radiation that operates at room temperature and occupies a small volume on a chip. Different resonators have been proposed for the realization of such a nanolaser--microdisk and photonic bandgap resonators, and, more recently, metallic, metallo-dielectric and plasmonic resonators. But progress towards realizing the ultimate nanolaser has been hindered by the lack of a systematic approach to scaling down the size of the laser cavity without significantly increasing the threshold power required for lasing. Here we describe a family of coaxial nanostructured cavities that potentially solve the resonator scalability challenge by means of their geometry and metal composition. Using these coaxial nanocavities, we demonstrate the smallest room-temperature, continuous-wave telecommunications-frequency laser to date. In addition, by further modifying the design of these coaxial nanocavities, we achieve thresholdless lasing with a broadband gain medium. In addition to enabling laser applications, these nanoscale resonators should provide a powerful platform for the development of other QED devices and metamaterials in which atom-field interactions generate new functionalities.
    Preview · Article · Feb 2012 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Engineering the optical properties using artificial nanostructured media known as metamaterials has led to breakthrough devices with capabilities from super-resolution imaging to invisibility. In this article, we review metamaterials for quantum nanophotonic applications, a recent development in the field. This seeks to address many challenges in the field of quantum optics using recent advances in nanophotonics and nanofabrication. We focus on the class of nanostructured media with hyperbolic dispersion that have emerged as one of the most promising metamaterials with a multitude of practical applications from subwavelength imaging, nanoscale waveguiding, biosensing to nonlinear switching. We present the various design and characterization principles of hyperbolic metamaterials and explain the most important property of such media: a broadband enhancement in the electromagnetic density of states. We review several recent experiments that have explored this phenomenon using spontaneous emission from dye molecules and quantum dots. We finally point to future applications of hyperbolic metamaterials of using the broadband enhancement in the spontaneous emission to construct single photon sources.
    Full-text · Article · Apr 2012 · Journal of optics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical metamaterials and nanoplasmonics bridge the gap between conventional optics and the nanoworld. Exciting and technologically important capabilities range from subwavelength focusing and stopped light to invisibility cloaking, with applications across science and engineering from biophotonics to nanocircuitry. A problem that has hampered practical implementations have been dissipative metal losses, but the efficient use of optical gain has been shown to compensate these and to allow for loss-free operation, amplification and nanoscopic lasing. Here, we review recent and ongoing progress in the realm of active, gain-enhanced nanoplasmonic metamaterials. On introducing and expounding the underlying theoretical concepts of the complex interaction between plasmons and gain media, we examine the experimental efforts in areas such as nanoplasmonic and metamaterial lasers. We underscore important current trends that may lead to improved active imaging, ultrafast nonlinearities on the nanoscale or cavity-free lasing in the stopped-light regime.
    Full-text · Article · Jun 2012 · Nature Materials
Show more