In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy

Article (PDF Available)inOptics Letters 36(20):4017-9 · October 2011with42 Reads
DOI: 10.1364/OL.36.004017 · Source: PubMed
We recently proposed photoacoustic correlation spectroscopy (PACS) and demonstrated a proof-of-concept experiment. Here we use the technique for in vivo flow speed measurement in capillaries in a chick embryo model. The photoacoustic microscopy system is used to render high spatial resolution and high sensitivity, enabling sufficient signals from single red blood cells. The probe beam size is calibrated by a blood-mimicking phantom. The results indicate the feasibility of using PACS to study flow speeds in capillaries.


    • "The axial andFig. 8. Transit-time principle for particle ensembles69707172. As cells transit the focus with a greater speed, features of the density distribution will show up with sharper peaks.Fig. "
    [Show abstract] [Hide abstract] ABSTRACT: Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages.
    Full-text · Article · Aug 2015
  • [Show abstract] [Hide abstract] ABSTRACT: The feasibility of making spatially resolved measurements of blood velocity using a pulsed photoacoustic Doppler technique in acoustic resolution mode has been investigated. Doppler time shifts were quantified via cross-correlation of photoacoustic waveform pairs generated within a blood-simulating phantom using pairs of light pulses. The phantom comprised micron-scale absorbers imprinted on an acetate sheet and moved at known velocities. The photoacoustic waves were detected using PZT ultrasound transducers operating at center frequencies of 20 MHz, 5 MHz and 3.5 MHz; measurements of velocity and resolution were calculated from the mean cross-correlation function of 25 waveform pairs. Velocities in the range ±0.15 to ±1.5 ms(-1) were quantified with accuracies as low as 1%. The transducer focal beam width determines a maximum measurable velocity |V(max)| beyond which correlation is lost due to absorbers moving out of the focal beam between the two laser pulses. Below |V(max)| a measurement resolution of <4% of the measured velocity was achieved. Resolution and |V(max)| can be scaled to much lower velocities such as those encountered in microvasculature (< 50 mms(-1)). The advantage of pulsed rather than continuous-wave excitation is that spatially resolved velocity measurements can be made, offering the prospect of mapping flow within the microcirculation.
    Full-text · Article · Sep 2012
    Joanna BrunkerPaul BeardPaul Beard
  • [Show abstract] [Hide abstract] ABSTRACT: Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better results are obtained using a detector with a higher centre frequency and larger bandwidth and tubes with a narrower diameter.
    Article · Mar 2013
    J. BrunkerP. BeardP. Beard
Show more