Alpers Syndrome With Mutations in POLG: Clinical and Investigative Features

Genetic Health, Victorian Clinical Genetics Service, Melbourne, Victoria, Australia.
Pediatric Neurology (Impact Factor: 1.7). 11/2011; 45(5):311-8. DOI: 10.1016/j.pediatrneurol.2011.07.008
Source: PubMed


Alpers syndrome is a rare autosomal recessive hepatocerebral degenerative disorder. Seventeen patients with Alpers syndrome or polymerase-γ gene mutations were identified. Case records of 12 patients with Alpers syndrome and polymerase-γ mutations in both alleles were reviewed. All patients manifested developmental delay or regression, refractory epilepsy, and biochemical liver dysfunction. Liver failure occurred in three patients previously treated with valproate. Other signs included ataxia, visual disturbance, motor paresis, and tremor. Myoclonic and focal motor seizures were common, often manifesting as status epilepticus. Electroencephalograms demonstrated absent/slow posterior dominant rhythms. Interictal discharges were common, usually involving the occipital lobes. Rhythmic high-amplitude delta with (poly)spikes was evident in four patients. Magnetic resonance imaging showed migratory, cortical, and subcortical T(2) hyperintensities in four children most often affected the parietal and occipital lobes. Developmental regression and refractory focal motor or myoclonic seizures are consistent clinical features of Alpers syndrome with polymerase-γ mutations. Liver dysfunction constitutes a late manifestation. Migratory T(2)/fluid attenuated inversion recovery signal abnormalities involving metabolically active occipital and sensorimotor cortical regions comprise characteristic imaging findings. Interictal and ictal electroencephalogram patterns are more variable than previously reported. Three common polymerase-γ mutations, in patients of European descent, can assist with rapid diagnosis, circumventing the need for liver biopsy.

9 Reads
  • Source
    • " patients , but only rarely in children , suggesting either that it develops later in the disease course , unless it simply reflects that electrophysio - logical investigations are not frequently performed in this age group . In support of our findings , peripheral neuropathy has not been reported in other series of children with POLG deficiency ( Hunter et al . , 2011 ; Isohanni et al . , 2011 ) . Ataxia was present in most of our cases ( 85% ) and was not a discriminating factor related to disease course or prognosis . Ataxia was largely related to the presence of severe sensory neuropathy , and all patients with sensory - axonal peripheral neuropathy had ataxia . The occa - sional occurrence of ata"
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymerase-γ (POLG) is a major human disease gene and may account for up to 25% of all mitochondrial diseases in the UK and in Italy. To date, >150 different pathogenic mutations have been described in POLG. Some mutations behave as both dominant and recessive alleles, but an autosomal recessive inheritance pattern is much more common. The most frequently detected pathogenic POLG mutation in the Caucasian population is c.1399G>A leading to a p.Ala467Thr missense mutation in the linker domain of the protein. Although many patients are homozygous for this mutation, clinical presentation is highly variable, ranging from childhood-onset Alpers-Huttenlocher syndrome to adult-onset sensory ataxic neuropathy dysarthria and ophthalmoparesis. The reasons for this are not clear, but familial clustering of phenotypes suggests that modifying factors may influence the clinical manifestation. In this study, we collected clinical, histological and biochemical data from 68 patients carrying the homozygous p.Ala467Thr mutation from eight diagnostic centres in Europe and the USA. We performed DNA analysis in 44 of these patients to search for a genetic modifier within POLG and flanking regions potentially involved in the regulation of gene expression, and extended our analysis to other genes affecting mitochondrial DNA maintenance (POLG2, PEO1 and ANT1). The clinical presentation included almost the entire phenotypic spectrum of all known POLG mutations. Interestingly, the clinical presentation was similar in siblings, implying a genetic basis for the phenotypic variability amongst homozygotes. However, the p.Ala467Thr allele was present on a shared haplotype in each affected individual, and there was no correlation between the clinical presentation and genetic variants in any of the analysed nuclear genes. Patients with mitochondrial DNA haplogroup U developed epilepsy significantly less frequently than patients with any other mitochondrial DNA haplotype. Epilepsy was reported significantly more frequently in females than in males, and also showed an association with one of the chromosomal markers defining the POLG haplotype. In conclusion, our clinical results show that the homozygous p.Ala467Thr POLG mutation does not cause discrete phenotypes, as previously suggested, but rather there is a continuum of clinical symptoms. Our results suggest that the mitochondrial DNA background plays an important role in modifying the disease phenotype but nuclear modifiers, epigenetic and environmental factors may also influence the severity of disease.
    Full-text · Article · Dec 2012 · Brain
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electron microscopy (EM) is a reliable method for diagnosing mitochondrial diseases in striated muscle biopsy in infancy. Ultrastructural alterations in mitochondria of myofibers are well documented, but there are few studies of endothelial involvement in intramuscular capillaries. Quadriceps femoris biopsies of five representative infants and toddlers, ages neonate to 3.5 years, were performed because of clinical and laboratory data consistent with mitochondrial disease without mitochondrial DNA (mtDNA) mutations and likely with nuclear DNA mutations. Pathological studies included histochemistry, EM, respiratory chain enzymatic assay and mtDNA sequencing and deletion/duplication analysis. EM demonstrated frequent and severe alterations of mitochondria in capillary endothelium. The most constant changes included: either too few or fragmented cristae; stacked and whorled cristae; paracrystallin structures that often were large and spheroid with stress fractures; closely apposed membranes of granular endoplasmic reticulum surrounding mitochondria with loss of the normal intervening layer of cytoplasm; long narrow, thin looped microvilli extending into the lumen; and thick microvilli containing large, abnormal mitochondria. We conclude that mitochondrial cytopathies in early life exhibit more severe ultrastructural alterations in the endothelium than in myofibers and that paracrystallin body structure differs, perhaps due to less rigid surrounding structures. This distribution may explain the frequent lack of prominent histochemical and biochemical abnormalities in muscle biopsies of young patients. Endothelial changes do not distinguish the genetic defects. Vascular involvement in brain contributes to cerebral lesions and neuronal death by impairment of molecular and nutrient transport and ischemia; endothelium in muscle may reflect similar changes.
    No preview · Article · Dec 2012 · Neuropathology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three deceased infants from a Pakistani consanguineous family presented with a similar phenotype of cholestatic liver disease, hypotonia, severe failure to thrive, recurrent vomiting, renal tubulopathy, and a progressive neurodegenerative course. Mitochondrial DNA depletion syndrome was considered in view of multisystem involvement. Exome sequencing, revealed a homozygous novel mutation c.1183T>C (p.F395L) in exon 1 of the C10orf2 TWINKLE gene. The hepatocerebral phenotype is well recognized in association with recessive mutations involving the C10orf2 TWINKLE gene. The feature of renal tubulopathy adds to the multisystemic presentation in our patients and further demonstrates an expansion of the phenotype in mitochondrial DNA depletion syndrome associated with TWINKLE gene mutations. The absence of features of an epileptic encephalopathy appears to be of added interest.
    No preview · Article · Dec 2012 · Molecular Genetics and Metabolism
Show more