ArticleLiterature Review

Exposure Limits: The underestimation of absorbed cell phone radiation, especially in children

Authors:
  • EnviorninmentHealthTrust.org
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The existing cell phone certification process uses a plastic model of the head called the Specific Anthropomorphic Mannequin (SAM), representing the top 10% of U.S. military recruits in 1989 and greatly underestimating the Specific Absorption Rate (SAR) for typical mobile phone users, especially children. A superior computer simulation certification process has been approved by the Federal Communications Commission (FCC) but is not employed to certify cell phones. In the United States, the FCC determines maximum allowed exposures. Many countries, especially European Union members, use the "guidelines" of International Commission on Non-Ionizing Radiation Protection (ICNIRP), a non governmental agency. Radiofrequency (RF) exposure to a head smaller than SAM will absorb a relatively higher SAR. Also, SAM uses a fluid having the average electrical properties of the head that cannot indicate differential absorption of specific brain tissue, nor absorption in children or smaller adults. The SAR for a 10-year old is up to 153% higher than the SAR for the SAM model. When electrical properties are considered, a child's head's absorption can be over two times greater, and absorption of the skull's bone marrow can be ten times greater than adults. Therefore, a new certification process is needed that incorporates different modes of use, head sizes, and tissue properties. Anatomically based models should be employed in revising safety standards for these ubiquitous modern devices and standards should be set by accountable, independent groups.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Its potential risks include but is not limited to mental diseases [8], tissue impairment [9] and brain tumor [10]. In addition, there has been solid evidence that pregnant women and children are even more vulnerable to high electromagnetic radiation exposure [11], [12]. We note that particularly the radiation levels created by wireless power can he quite high, due to the strength of the electromagnetic fields created. ...
... The existence of at most one charger per node in a feasible assignment of LRDC is guaranteed by constraint (11). Constraint (12) guarantees that when a node v can be reached by u, then all nodes closer to u can also be reached by u. Finally, constraint (13) guarantees that the radiation threshold is not violated and also suggests that there is no reason why a charger should be able to reach nodes that are further than i (u) nrg . ...
... In our experimental evaluation, we solve IP-LRDC by first making a linear relaxation and then rounding the solution so that the constraints (11), (12) and (13). It is easy to see that the objective function value that we get is a lower bound on the optimal solution of the LREC problem. ...
Preprint
Full-text available
We study the problem of efficiently charging a set of rechargeable nodes using a set of wireless chargers, under safety constraints on the electromagnetic radiation incurred. In particular, we define a new charging model that greatly differs from existing models in that it takes into account real technology restrictions of the chargers and nodes of the network, mainly regarding energy limitations. Our model also introduces non-linear constraints (in the time domain), that radically change the nature of the computational problems we consider. In this charging model, we present and study the Low Radiation Efficient Charging Problem (LREC), in which we wish to optimize the amount of "useful" energy transferred from chargers to nodes (under constraints on the maximum level of imposed radiation). We present several fundamental properties of this problem and provide indications of its hardness. Finally, we propose an iterative local improvement heuristic for LREC, which runs in polynomial time and we evaluate its performance via simulation. Our algorithm decouples the computation of the objective function from the computation of the maximum radiation and also does not depend on the exact formula used for the computation of the electromagnetic radiation in each point of the network, achieving good trade-offs between charging efficiency and radiation control; it also exhibits good energy balance properties. We provide extensive simulation results supporting our claims and theoretical results.
... Gandhi, et al., (2012) [31]. ...
... The risk is reported to be highest in population of <20 years [30]. Children and adolescents are more exposed to RF radiations of wireless phone due to smaller heads, higher conductivity, and thinner skulls than the adults [31]. These factors contribute in the higher absorption of RF radiation through children's brains [31]. ...
... Children and adolescents are more exposed to RF radiations of wireless phone due to smaller heads, higher conductivity, and thinner skulls than the adults [31]. These factors contribute in the higher absorption of RF radiation through children's brains [31]. Smartphone also cause the sleep disturbance due to the RF radiations [32]. ...
Article
Full-text available
COVID-19 has caused obstacles in continuing normal life almost everywhere in the world by causing the implementation of social distancing and eventually imposing the lockdown. This has become the reason for the increase in technology usage in daily life for professional work as well as for entertainment purposes. There has been an increased prevalence of technology usage in adolescents and children during lockdown leaving its impact on their lives either in a positive or negative aspect. The overall documented percentage increase of technology usage in children was about 15%, of which smartphone usage has 61.7% of prevalence. Disturbance in brain functioning is suggested to be originated by compromise of neuroplasticity of the nerves. The radiofrequency (RF) radiations emitting from the smartphone are of doubtful concern as a brain tumor risk factor in children. The increased usage can have effects on brain functioning that will compromise sleep and cognitive abilities and develop risk for certain mental illnesses including, but not limited to, depression, anxiety, Alzheimer’s disease, and attention-deficit/hyperactive disorder (ADHD). Despite being a threat for developing mental illness, video games are proven to reduce depression and anxiety, and increase creativity, skills, and cognition in children. The increased usage of technology can have a positive and negative impact on the mental development of adolescents and children depending on the trends in the usage. However, parents should be monitoring their children’s mental health and behavior in these difficult times of pandemic.
... More recent studies that examined the impact of electromagnetic radiation from mobile phones on children revealed that there are certain differences compared to radiation exposure of adults, specifically that the impact might be greater in children than in adults [5][6][7][8][9][10][11]. ...
... Most studies that examined the potential adverse effects of electromagnetic radiation from mobile phones on their users were focused on determining the values of electric field inside the model body and the values for SAR (Specific Absorption Rate) [1][2][3][4][5][6][7][8][9][10]. The effects of magnetic field from a mobile phone and its spatial distribution inside the model were seldom considered. ...
... The averaging durations have been derived considering the time constant of in vivo temperature evolution. An example of the transient temperature during a single oscillation period is shown in Fig. 5. Fig. 5. Transient temperature oscillations resulting from a pulse train resulting in temperature increase of 1K with continuous exposure [14]. ...
... However, short pulses can lead to important temperature oscillations, which may be further exacerbated at high frequencies (>10 GHz, fundamental to 5G), where the shallow penetration depth leads to intense surface heating and a steep, rapid rise in temperature (e.g., proportional to sqrt(t) for plane-wave exposure [14]. ...
Article
Full-text available
This analytic research paper discusses the effects of emerging futuristic 5th Generation (5G) cellular technology over human health. The technology is growing with three major advantages of high speed, lower latency and to connect more devices at the same time. In the recent pandemic event of Covid-19, many believe that for the achievement of high speed in 5G, it will be required to have high power and this high power will decrease the immune system in short term. But actually, the reality doesn’t support the above condition. This paper defines how the speed will increase with the help of low bit error rate and also through different useful techniques thereby not just by increasing the power. In addition of high-frequency 5G radiation to an already complex mix of lower frequencies, the implementation will contribute to a negative public health outcome both from physical and mental health perspectives to a certain extent.
... Most studies about the impact of electromagnetic radiation from wireless mobile devices focused on the impact of radiation on adult head models [1][2][3][4]. However, recent studies on the impact of electromagnetic radiation from mobile phones on children showed that the radiation exposure of adults differs from that of children and that children are more affected by EMR than adults [5][6][7][8][9][10][11]. A number of studies also showed that electromagnetic radiation causes a higher incidence of malignant brain tumours. ...
... Additionally, The Rulebook on the Limits of Exposure to Non-Ionizing Radiation [15] defines the basic limitations and reference limit levels of exposure of the population to electric, magnetic, and electromagnetic fields of different frequencies that are regarded as safe for human health. The majority of the studies concerning the potential harmful effects of electromagnetic radiation on mobile phones users focused on establishing the electric field values of inside the model body and the SAR (Specific Absorption Rate) values [1][2][3][4][5][6][7][8][9][10]. The magnetic field distribution through the child head model is calculated for the same horizontal crosssection of the model for three different frequencies -0.9 GHz, 1.8 GHz, and 2.1 GHz. ...
Article
Full-text available
Children's everyday use of mobile phones exposes them to significant levels of electromagnetic radiation, causing public concern over the potential adverse effects. This paper discusses the magnetic field distribution from a mobile phone at the frequencies of 0.9, 1.8, and 2.1 GHz through a child head model. Human tissues and organs are represented in terms of their corresponding electromagnetic properties. The results of magnetic field distribution for a horizontal cross-section of the child head model at the three given frequencies are presented in the paper.
... It was proposed that brain plasticity, as well as cortex thickness, changed during the life span (Oberman and Pascual-Leone 2013). In addition, according to Gandhi et al. (2012) children have thinner skull and brain tissue with higher conductivity and higher radiofrequency absorption (Gandhi et al. 2012); however, superior neural plasticity of younger people compared with older individuals (Noack et al. 2009) may compensate for the brain effectiveness of mobile phone's EMF in the younger group. These differences may influence the brain's response to the EMFs emitted by mobile phones. ...
... It was proposed that brain plasticity, as well as cortex thickness, changed during the life span (Oberman and Pascual-Leone 2013). In addition, according to Gandhi et al. (2012) children have thinner skull and brain tissue with higher conductivity and higher radiofrequency absorption (Gandhi et al. 2012); however, superior neural plasticity of younger people compared with older individuals (Noack et al. 2009) may compensate for the brain effectiveness of mobile phone's EMF in the younger group. These differences may influence the brain's response to the EMFs emitted by mobile phones. ...
Article
Full-text available
Purpose The effects of electromagnetic fields of mobile phones on headaches have attracted researchers during the last decades. However, contradictory results have been reported so far. Methods In this systematic review and meta-analysis, major databases including PubMed, Scopus and Web of Science were searched using suitable search terms and PRISMA guidelines to retrieve eligible studies for the effect of mobile phone use on headache. After the abstract and full-text screening, 33 studies were retrieved and the effect size in terms of odds ratio (OR) was extracted. Between-study heterogeneity was assessed using I² statistic and Q test, while publication bias was evaluated by funnel plot and Egger’s and Begg’s tests. Results Among 33 eligible studies, 30 eligible studies were included in the meta-analysis. When considering all studies, the pooled effect size of OR = 1.30(95% CI 1.21–1.39) was obtained, while the heterogeneity between studies was significant. Subgroup analyses by considering the age of participants and EMF exposure duration were performed to find the source of heterogeneity. The odds ratios when the age of participants was the variable were 1.33 (95% CI 1.14–1.53) and 1.29 (95% CI 1.20–1.37), for ages > 18 and age ≤ 18 years, respectively. When EMF exposure duration was considered, subgroup analysis obtained the pooled effect size of OR = 1.41(95% CI 1.22–1.61) and 1.23(95% CI 1.12–1.34), for EMF exposure duration > 100 and ≤ 100 minutes per week, respectively. The pooled effect sizes emphasized the effect of mobile phone use on headaches for all ages and exposure durations. Conclusion Results revealed that age and exposure duration (mainly call duration), both were the source of heterogeneity between studies. Furthermore, results showed that increasing call duration and mobile phone use in older individuals increased the risk of headache.
... There is also some tangible evidence that pregnant women and children are more vulnerable to high electromagnetic radiation [19]. For example, children's heads absorb electromagnetic waves twice that of adults [20] under the same condition. In recent research, the radiation safety problem of wireless charging has begun to attract attention. ...
Article
Full-text available
A safe charging algorithm in wireless rechargeable sensor network ensures the charging efficiency and the electromagnetic radiation below the threshold. Compared with the current charging algorithms, the safe charging algorithm is more complicated due to the radiation constraint and the mobility of the chargers. A safe charging algorithm based on multiple mobile chargers is proposed in this paper to charge the sensor nodes with mobile chargers, in order to ensure the premise of radiation safety, multiple mobile chargers can effectively complete the network charging task. Firstly, this algorithm narrows the possible location of the sensor nodes by utilizing the charging time and antenna waveform. Secondly, the performance of non-partition charging algorithm which algorithm allow chargers to charge different sensors sets in a different cycle is evaluated against the one of partition charging which does not allow for charging different ones. The moving distance of the charger node will be reduced by 18%. It not only improves the safety level which is inversely proportional to electromagnetic radiation but also expands the application scope of the wireless sensor nodes.
... The effect will be different, it depends on the potition of smartphone while using it [13]. Apart from the fact that the heads of smartphone users vary based on age and other parameters exposured guidelines are made at the head base for adult sizes [14]. There are also many smartphone with low quality components at lower prices found in some smartphone models. ...
Article
Full-text available
This research discussed the modelling of an electromagnetic wave radiation exposure on a smartphone which helped by the Mat Lab program. The modelling that was used to solve the intensity radiation was an inversion modelling. Inversion modelling can be defined as a mathematical and statistical method that used to obtain information based on obervational data which is processed into formulation. The purpose of this research was to determine the strong forms of exposure that existed in smartphone with 3 G and 4 G network types. The difference of network types aimed to find out the different forms of the received exposure. The method that was used in this research was done by taking field data which was matched with the calculating data. In order to obtain the suitability of theoretical data and field data, an experimental process can be carried out so that the appropriate results will be obtained and illustrated in graphical form.
... Therefore, the Electro-Magnetic Fields (EMF) emitted from mobile phones need to be questioned, and not primarily the lower power densities due to the base station antennas. Most of the scientific community (Gandhi and Lloyd Morgan, 2012;Hardell et al., 2013;Hardell and Carlberg, 2015;Bolte and Eikelboom, 2012) agrees that mobile phone exposure is the main thing to be investigated in relation with possible health hazards. Second, mobile phone radiation levels are dependent on network quality, i.e. strength of the signal that the phone receives. ...
Article
A measuring campaign for the assessment of electromagnetic exposure levels from mobile phones in the city center of Leuven, Belgium, has been carried out. The main objective of the assessment is to study the dependency of the exposure of the user by his own mobile phone in terms of location in the city (very close to base stations and at randomly selected locations). The measurements were performed in both public and private areas in 60 outdoor and 60 indoor locations in Leuven. The campaign was focused on GSM 900 mobile communications. The results show that the exposure is considerably higher for indoor environments compared to outdoor environments, and at the randomly chosen locations compared to locations very close to base stations. However, the most important observation is that the average outdoor exposure in Leuven of the user of a mobile phone is about 8 times higher than the average outdoor exposure by base stations. Indoors, this factor rises to about 30.
... As a result, it takes a much longer time to charge a EHWSN than expected. To accelerate long-distance charging, one way is to increase the chargers' power, but this may lead to electromagnetic radiation (EMR) pollution and harm humans (Gandhi et al. 2012). Another method is to add more chargers in EHWSNs and using multiple chargers to charge sensors at the same time, as the combined power energy will be stronger and charging time will be shortened. ...
Article
Wireless energy transfer has been widely studied in recent decades, with existing works mainly focused on maximizing network lifetime, optimizing charging efficiency, and optimizing charging quality. All these works use a charging model with the linear superposition, which may not be the most accurate. We apply a nonlinear superposition model, and we consider the Fast Charging Scheduling problem (FCS): Given multiple chargers and a group of sensors, how can the chargers be optimally scheduled over the time dimension so that the total charging time is minimized and each sensor has at least energy E? We prove that FCS is NP-complete and propose a 2-approximation algorithm to solve it in one-dimensional (1D) line. In a 2D plane, we first consider a special case of FCS, where the initial phases of all chargers are the same, and propose an algorithm to solve it, which has a bound. Then we propose an algorithm to solve FCS in a general 2D plane. Unlike other algorithms, our algorithm does not need to calculate the combined energy of every possible combination of chargers in advance, which greatly reduces the complexity. Extensive simulations demonstrate that the performance of our algorithm performs almost as good as the optimal algorithm.
... In 2009, the study stated that the Central Nervous System absorption in children's is higher (~2x) as the MWR source is closer and skin and bone layers are thinner and bone marrow exposure (~10x) varies with the age [8]. In 2010, Andreas Christ and his team described that the child's hippocampus and hypothalamus absorbs 1.6-3.1 times greater and the cerebellum absorbs 2.5 times higher MWR compared to adults; the bone marrow of child absorbs 10 times more MWR radiation than adults [9,10]. few phones give peak SAR value above the ear, some beneath the ear and few even below the ear. ...
Article
Full-text available
The mobile radiation seems to be severe among children than the adults because their skulls are tiny and thinner. Mobile phones emit radiations and RF-EMF is considered as a Group 2B (carcinogen) and the survey suggests that 10-year latency period is practically enough for the development of tumors. The studies from various groups involve cases of 35487 and controls about 82609. The results for meta- analysis of glioma gave an odd ratio OR=1.10, 95% CI=0.79-1.54 and for the latency period ≥10 years, OR=1.38, 95% CI=0.70-2.73. The highest risk was found in the age group below 20 years from the Hardell Group.
... Issues related to anonymization and re-identification of data, and sharing of research data collected from apps, were omitted. Finally, issues related to radiofrequency microwave radiation exposure were not discussed, including cellphone safety limits, emissions when cellphones touch the body, increased absorption rates in children (Gandhi et al. 2012;Gandhi 2019;Fernández et al. 2018;Morris et al. 2015), and potential health effects from long-term exposure (Lin 2018). The article search for this review occurred between February-May, 2019. ...
Article
Full-text available
There has been increasing interest in the use of smartphone applications (apps) and other consumer technology in mental health care for a number of years. However, the vision of data from apps seamlessly returned to, and integrated in, the electronic medical record (EMR) to assist both psychiatrists and patients has not been widely achieved, due in part to complex issues involved in the use of smartphone and other consumer technology in psychiatry. These issues include consumer technology usage, clinical utility, commercialization, and evolving consumer technology. Technological, legal and commercial issues, as well as medical issues, will determine the role of consumer technology in psychiatry. Recommendations for a more productive direction for the use of consumer technology in psychiatry are provided.
... The risks of excessive RF energy exposure have been studied in the past, which have revealed that harmful biological effects may stem from strong RF radiation [26][27][28][29][30][31] . High energy density across the charging space in WPT systems may cause excessive RF energy exposure, which we strive to avoid in the design of our system. ...
Article
Full-text available
This paper presents a new Wireless Power Transfer (WPT) approach by aligning the phases of a group of spatially distributed Radio Frequency (RF) transmitters (TX) at the target receiver (RX) device. Our approach can transfer energy over tens of meters and even to targets blocked by obstacles. Compared to popular beamforming based WPTs, our approach leads to a drastically different energy density distribution: the energy density at the target receiver is much higher than the energy density at other locations. Due to this unique energy distribution pattern, our approach offers a safer WPT solution, which can be potentially scaled up to ship a higher level of energy over longer distances. Specifically, we model the energy density distribution and prove that our proposed system can create a high energy peak exactly at the target receiver. Then we conduct detailed simulation studies to investigate how the actual energy distribution is impacted by various important system parameters, including number/topology of transmitters, transmitter antenna directionality, the distance between receiver and transmitters, and environmental multipath. Finally, we build an actual prototype with 17 N210 and 4 B210 Universal Software Radio Peripheral (USRP) nodes, through which we validate the salient features and performance promises of the proposed system.
... Such studies have been instrumental in designing/devising these equipments for safe utilization. These studies also provide guidance regarding usable limits of these devices [134]. Proposed resonant structures can be used for study and analysis of impact on humans and other species in specific microwave environment. ...
Thesis
Full-text available
Material specifications are required in variety of fields like pharmaceutical, chemical, biological, metallurgical, petro-chemical, food processing/grading, forestry, mining, aerospace, equipment manufacture and quality control applications. When a composite/liquid mixture is prepared by mixing two or more ingredients/liquids, effective permittivity is a function of volume fraction and individual permittivity of constituents. Numerous techniques and methods are in practice for finding effective permittivity and other properties of composite/solution. For obtaining accurate results for low loss materials, resonant perturbation technique is given preference to others. Improved accuracy can be expected by increasing the sensitivity of resonant structures. Split-ring resonator (SRR) for compositional analysis (detection of small changes in volume fraction) of mixture comprising of ethanol and methanol was initially studied. A novel concept of split-ball resonator (SBR) for such analysis with enhanced sensitivity has been proposed. Proposed empirical formulas for output parameters of SBR structure have been worked out. Optimization algorithm developed to further enhance sensitivity of the two structures by utilizing statistical tools. Large deviations in output parameters and hence sensitivity obtained for optimized resonators. Regression equations obtained for relating output parameters with resonators’ geometry. Sensitivity and comparative analysis with other similar works pertaining to volume fraction and effective permittivity has been performed. Due to optimization, these analyses for moderate/medium loss material were demonstrated. Bivariate cubic expressions for volume fraction and permittivity of mixture as a function of output parameters have been obtained.
... Despite this fact, authorities have to make sure that the radio frequency signals radiated by wireless devices have no adverse health effects for the general public. One source of concern has been electromagnetic radiation of cell phones and laptops (1)(2)(3)(4) as well as cellular Base [Transceiver] Stations (BTS) and WiFi access points (5)(6)(7)(8)(9) . To ensure public safety, real-world measurements should be conducted and the results are analyzed by the scientific community. ...
Article
This paper presents a series of electromagnetic field measurements performed on the campus of Ferdowsi University of Mashhad in order to assess the compliance of radiation levels of cellular base stations and WiFi access points with international guidelines. A calibrated, broadband and isotropic probe is used and recommendations of International Telecommunication Union (ITU) are followed up throughout measurements. More than 300 outdoor and indoor locations have been systematically chosen for measurements. The recorded data are post-processed and compared with the guideline of International Commission on Non-Ionizing Radiation Protection (ICNIRP). Measured power densities of WiFi access points are low and do not exceed 1% of the level allowed by ICNIRP. For cellular base stations, measured power density is usually low outdoors, but reaches up to 16% of the allowed radiation level in publicly accessible indoor locations. Comprehensive exposure assessment, as recommended by ITU, has been performed to estimate the maximum possible radiation of one indoor base station. It is concluded that precautionary actions have to be taken by university authorities to limit the presence of students in close proximity to specific indoor antennas. Moreover, comprehensive exposure assessment is more likely necessary for indoor base stations whereas such assessment is not usually required outdoors.
... This applies especially to children and youth, whose thyroid tissue is still developing (Sangün et al., 2015). Similarly, thyroid radiosensitivity is greater (Sangün et al., 2015;Gandhi et al., 2012) in physiological states of metabolic increase, such as pregnancy (Mollee et al., 2011), and thyroid function should be protected (Lauer et al., 2013). Notably, we found higher numbers of C cells in radiated rats, compared to control animals (p < 0.001), which has been described by other authors in association with increased calcitonin (Rajkovic et al., 2005). ...
Article
In this study we analyzed the response of parafollicular cells in rat thyroid gland after exposure to radiofrequency at 2.45 GHz using a subthermal experimental diathermy model. Forty-two Sprague Dawley rats, divided into two groups of 21 rats each, were individually exposed at 0 (control), 3 or 12 W in a Gigahertz Transverse Electro-Magnetic (GTEM) chamber for 30 min. After radiation, we used simple or fluorescence immunohistochemistry to measure calcitonin cells or cellular stress levels, indicated by the presence hyperplasia of parafollicular cells, heat shock protein (HSP) 90. Immunomarking of calcitonin-positive cells was statistically significant higher in the thyroid tissue of rats exposed to 2.45 GHz radiofrequency and cell hyperplasia appeared 90 min after radiation at the SAR levels studied. At the same time, co-localized expression of HSP-90 and calcitonin in parafollicular cells was statistically significant attenuated 90 min after radiation and remained statistically significantly low 24 h after radiation, even though parafollicular cell levels normalized. These facts indicate that subthermal radiofrequency (RF) at 2.45 GHz constitutes a negative external stress stimulus that alters the activity and homeostasis of parafollicular cells in the rat thyroid gland. However, further research is needed to determine if there is toxic action in human C cells.
... nih.gov/about/org/index.html). The brain is the main target of the exposure to RF radiation during the use of handheld wireless phones; both mobile and cordless phones (1,2). Thus, an increased risk of developing brain tumors has long been a cause for concern. ...
Article
Full-text available
During the use of handheld mobile and cordless phones, the brain is the main target of radiofrequency (RF) radiation. An increased risk of developing glioma and acoustic neuroma has been found in human epidemiological studies. Primarily based on these findings, the International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) classified in May, 2011 RF radiation at the frequency range of 30 kHz‑300 GHz as a 'possible' human carcinogen, Group 2B. A carcinogenic potential for RF radiation in animal studies was already published in 1982. This has been confirmed over the years, more recently in the Ramazzini Institute rat study. An increased incidence of glioma in the brain and malignant schwannoma in the heart was found in the US National Toxicology Program (NTP) study on rats and mice. The NTP final report is to be published; however, the extended reports are published on the internet for evaluation and are reviewed herein in more detail in relation to human epidemiological studies. Thus, the main aim of this study was to compare earlier human epidemiological studies with NTP findings, including a short review of animal studies. We conclude that there is clear evidence that RF radiation is a human carcinogen, causing glioma and vestibular schwannoma (acoustic neuroma). There is some evidence of an increased risk of developing thyroid cancer, and clear evidence that RF radiation is a multi‑site carcinogen. Based on the Preamble to the IARC Monographs, RF radiation should be classified as carcinogenic to humans, Group 1.
... Electromagnetic radiation can cause a wide variety of symptoms: difficult sleeping, dizziness, headaches, tingling in the hands, ringing in the ears, eye pain, cardiac conditions that can't be explained, electro sensitivity, low immunity, attention deficit hyperactivity disorder, and autism [67]. This is very important because the absorption of electromagnetic radiation on a child's head can be greater by over two times, and absorption of the skull's bone marrow can be greater by over ten times than in adults [68]. ...
Article
Full-text available
Neck pain is a prevalent health problem, largely reported in adult patients. However, very recent data show that new technologies are inducing a shift in the prevalence of this relevant issue from adulthood to all of the pediatric ages. In fact, the precocious and inappropriate use of personal computers and especially cell phones might be related to the development of a complex cluster of clinical symptoms commonly defined as “text neck syndrome”. The purpose of this article is to analyze the new phenomenon of the “text neck syndrome”, the underlying causes and risk factors of musculoskeletal pain, that can be modified by changes in routine life, in different cultures and habits, and on the “text neck syndrome” as increased stresses on the cervical spine, that can lead to cervical degeneration along with other developmental, medical, psychological, and social complications. Findings support the contention that an appropriate approach for an early diagnosis and treatment is crucial to properly evaluate this emerging issue worldwide in children and adolescents who spend a lot of time watching smartphones and computers; additional research with more rigorous study designs and objective measures of musculoskeletal pain are needed to confirm significant relationships. Existing evidence is limited by non-objective measures and the subjective nature of musculoskeletal pain.
... The risks of excessive RF energy exposure have been studied in the past, which have revealed that harmful biological effects may stem from strong RF radiation [58,59,60,61,62,63]. High energy density across the charging space in WPT systems may cause excessive RF energy exposure, which we strive to avoid in the design of Energy-Ball . ...
Thesis
Full-text available
In this thesis, we discuss the feasibility of using distributed antenna systems to facilitate the deployment of IoT devices. Our approaches are inspired by Fresnel zone plates for focusing light. In our design, in a manner analogous to creating a Fresnel zone plate, we discretize the zone plates into multiple independent phase shifters. Each phase shifter is a far-field RF transmitter in our system. Specifically, by coherently combining the phase of each RF transmitter in a 3D distributed antenna system, the system forms an energy ball at the target location where the energy density level is significantly higher than the energy density level at any other locations. Our results demonstrate that this energy ball has great potential to be leveraged to solve many fundamental problems in IoT and enable exciting IoT applications. In the first part of this thesis, we discuss how a distributed antenna system contributes to an IoT system's confidentiality gains. Ensuring confidentiality of communication is fundamental to securing the operation of a wireless IoT system, where eavesdropping is easily facilitated by the broadcast nature of the wireless medium. By applying distributed beamforming among a coalition, we show that a new approach for assuring physical layer secrecy, without requiring any knowledge about the eavesdropper or injecting any additional cover noise, is possible if the transmitters frequently perturb their phases around the proper alignment phase while transmitting messages. This approach is readily applied to amplitude-based modulation schemes, such as PAM or QAM. We present our secrecy mechanisms, prove several important secrecy properties, and develop a practical secret communication system design. In the next part of this thesis, we discuss how a distributed antenna system contributes to an IoT system's energy efficiency gains. In order to meet the ever-growing energy demand from the next billion IoT devices, we present a new wireless power transfer (WPT) approach by aligning the phases of a collection of radio frequency (RF) energy chargers at the target receiver device. Our approach can ship energy over tens of meters and to mobile targets. More importantly, our approach leads to a highly asymmetric energy density distribution in the charging area: the energy density at the target receiver is much higher than the energy density at other locations. It is a departure from existing beamforming based WPT systems that have high energy along the energy beam path. Such a technology can enable a large array of batteryless IoT applications and render them much more robust and long-running. Thanks to its asymmetric energy distribution, our approach potentially can be scaled up to ship a higher level of energy over longer distances. We design, prototype, and evaluate the proposed distributed antenna system. We implement the testbed that consists of 17 N210 and 4 B210 Universal Software Radio Peripheral (USRP) nodes, yielding a 20 x 20 m2 experiment area. Depending on system parameter settings, we measure that the eavesdroppers failed to decode 30%-60% of the bits across multiple locations while the intended receiver has an estimated bit error ratio of 3 x 10-6. Our results also show the system can deliver over 0.6mw RF power that enables batteryless mobile sensors at any point across the area. In the last part of this thesis, we build a distributed beamforming system that can continuously charge tiny IoT devices placed in hard-to-reach locations (e.g. medical implants) with consistent high power, even when the implant moves around inside the human body. To accomplish this, we exploit the unique energy ball pattern of the distributed antenna array and devise a backscatter-assisted beamforming algorithm that can concentrate RF energy on a tiny spot surrounding the medical implant. Meanwhile, the power levels on other body parts stay at a low level, reducing the risk of overheating. We prototype the system on 21 software-defined radios and a printed circuit board (PCB). Extensive experiments demonstrate that the proposed system achieves 0.37 mW average charging power inside a 10 cm-thick pork belly, which is sufficient to wirelessly power a range of commercial medical devices. Comparison with state-of-the-art powering approaches shows that our system achieves 5.4x-18.1x power gain when the implant is stationary, and 5.3x -7.4x power gain when the implant is in motion.
... The effect of exposure to RF-EMF on adult human health is associated with disturbances in sleep pattern, fertility, memory and learning, body weight, core temperature, metabolic effects, etc. but remains widely debated due to lack of established causal relationships [de Jenlis et al. 2020;Singh et al. 2020;Kim et al. 2019;Taberski et al. 2014;Achermann et al. 2013;Chou, 2003]. It is further hypothesized that children have small heads and thin skull bone; their brain tissue has higher conductivity, show greater absorption of RF energy per unit of time [Gandhi et al. 2012], and given their longer lifetimes ahead, are at a higher risk than adults to the ill effects of RF from mobile phone [Hardell 2018]. ...
Article
Full-text available
The present-day children-adolescents ubiquitously use the mobile phones and unrestrictedly consume fructose-laden diet. Unfortunately, a rise in the incidence of insulin resistance and fatty liver syndrome in young adults has also been recorded. To delineate a possible correlate, the effect of exposure to electromagnetic field (EMF) from the mobile phone and unrestricted fructose intake during pre-, peri-, and post-pubertal stages of development on orexigenic and anorexigenic signals arising from the hypothalamus and liver of rats is investigated here. The study design included four arms, i.e., “Normal”, “Exposure Only (ExpO)”, “Fructose Only (FruO)”, and “Exposure with Fructose (EF)”, wherein weaned rats received either “normal chow and drinking water” or “normal chow and fructose (15%) drinking solution” in presence and absence of EMF exposure (2 h/day) for 8 weeks. The results indicate that the total calories consumed by the EF were higher by early adulthood than normal, possibly under the influence of the raised levels of the orexigenic hormone, i.e., ghrelin, and it reflected as raised rate of weight gain. At early adulthood, the EF recorded mitigated response and sensitivity of insulin. Despite EF being a “fed-state”, both centrally and peripherally, the glycolysis was restrained, but the gluconeogenesis was raised. Additionally, the altered lipid profile and the glycogen levels indicate that the EF developed fatty liver. The energy homeostasis of the EF was compromised as evidenced by (a) reduced expression of the glucosensors-GLUT2 and glucokinase in the hypothalamus and liver and (b) reduced expression of the cellular energy regulator—AMPK, orexigenic peptide–NPY, and anorexigenic peptide-POMC in the hypothalamus. Taken together, the present study evidences that the exposure to EMFfrom the mobile phone and unrestricted fructose intake during childhood-adolescence impairs the central and peripheral pathways that mediate the glucosensing, glucoregulation, feeding, and satiety behavior by early adulthood.
... Electromagnetic radiation, known as the "invisible killer" of human beings, cannot be seen and felt, causing great harm to the function of human organs. Along the years, many studies [6][7][8][9][10] have been published on the effect of populations exposing to the mobile phone electromagnetic fields, and electromagnetic shielding materials becomes research hotspots [11][12][13][14][15]. Nowadays many researches have shown that strong magic field have a strong relationship with changes in blood performance and living organisms [16,17]. But there's little literature on the process parameters of needle punched nonwoven magnetic shielding materials. ...
Article
Full-text available
To obtain the intuitive data of magic field changes with nonwoven metal shielding material, the Al / PET / Rayon needle punched webs was processed with varied parameters, which were position of Al film, mass proportion of Al, needle punched density, and needle punched depth. Magnetic flux density values of Al / PET / Rayon needle punched webs were measured to calculate their magnetic flux density attenuation (MFDA) values under the exposure to mobile phone field. It was found that position of Al film, Al proportion, and needle punched density have a great effect on magnetic flux density attenuation. When Al proportion in needle punched web increases from 10% to 18%, MFDA values increase accordingly, and tend to converge around Al mass ratio 18%. Besides, the promotion range of MFDA values is particularly obvious in the case of needle punched density 50 g m⁻². When needle punched density increases from 50 g m⁻² to 150 g m⁻², MFDA values decrease or first increase and then decrease. When needle punched depth rises from 4 mm to 5 mm, the MFDA values of Al/PET/Rayon needle punched webs are almost the same value. Needle punched density and a high mass ratio of Al will contribute to magnetic shielding performance.
... So far personal use of wireless phones, mobile and cordless phones (DECT), have yielded highest RF radiation exposure especially to children and to the brain (Gandhi et al., 2012). However, ambient exposure is of increasing concern and may now be of the same magnitude as for increasing cancer incidence in animal studies. ...
Article
In urban environment there is a constant increase of public exposure to radiofrequency electromagnetic fields from mobile phone base stations. With the placement of mobile phone base station antennas radiofrequency hotspots emerge. This study investigates an area at Skeppsbron street in Stockholm, Sweden with an aggregation of base station antennas placed at low level close to pedestrians' heads. Detailed spatial distribution measurements were performed with 1) a radiofrequency broadband analyzer and 2) a portable exposimeter. The results display a greatly uneven distribution of the radiofrequency field with hotspots. The highest spatial average across all quadrat cells was 12.1 V m⁻¹ (388 mW m⁻²), whereas the maximum recorded reading from the entire area was 31.6 V m⁻¹ (2648 mW m⁻²). Exposimeter measurements show that the majority of exposure is due to mobile phone downlink bands. Most dominant are 2600 and 2100 MHz bands used by 4G and 3G mobile phone services, respectively. The average radiofrequency radiation values from the earlier studies show that the level of ambient RF radiation exposure in Stockholm is increasing. This study concluded that mobile phone base station antennas at Skeppsbron, Stockholm are examples of poor radiofrequency infrastructure design which brings upon highly elevated exposure levels to popular seaside promenade and a busy traffic street.
... In subsequent in vivo studies, it has been shown that long-term exposure to mobile phone radiation increases the risk of brain tumors [43,44]. Children and adolescents may be more sensitive to RF radiation than adults [45]. There is evidence that RF radiation causes cancer development by mechanisms such as generating reactive oxygen species, inducing an inflammatory response, and inhibiting DNA repair and creating chromosome aberrations [46][47][48]. ...
Article
Full-text available
Our knowledge about the etiology of cancer is increasing. Many studies show that non-intrinsic factors such as environment or lifestyle are the main risk factors for the occurrence of cancer. On the other hand, there are studies showing that the main risk factors in the occurrence of cancer are caused by DNA replication errors (known as the intrinsic factors). This view limits highly the possibility of protection from cancer. However, the findings obtained from the literature show that non-intrinsic factors contribute substantially to cancer risk and that cancer should be considered as a preventable disease. This review is aimed to examine the factors known as non-intrinsic cancer risk factors in the light of recent research.Key Words: cancer, non-intrinsic risk factors, cancer prevention.
... Apart from this, excessive use of cell phone can cause mental sickness in children (Gandhi et al., 2012). This which can be easily diluted by the harmful radiations. ...
... We are much more aware of effects that occur rapidly than those that take months or years before they become readily apparent. Most arguments that have been made that microwave frequency EMFs may be much more damaging to young children have centered on the much smaller skulls and skull thickness in young children, increasing the exposure of their brains to EMFs (Gandhi and Kang, 2001;Gandhi et al., 2012). However there are other arguments to be made. ...
Book
Full-text available
2012-2018 - Peer Reviewed Published Research Studies On Wi-Fi And 2.4 GHz Wireless Frequencies
... Thus, there are more central and brain stem tumors, facts not considered by Aydin et al. [93] In children the distribution of RF radiation differs from adults with larger part of the brain more exposed due to e.g. smaller head and thinner bone [105]. Thus, the laterality analysis should be interpreted with caution. ...
... This gives us a reason to assume that the penetration and distribution of EM field in child head is likely to be more [16,[21][22][23][24]. The exposure guidelines are established on the bases of a head, size of an adult's, regardless of the fact that user's head varies according to their age and other parameters [25]. Also, there are many mobile phone models that are being built poorly by using low-quality components and are available at a cheaper price in the market. ...
... Mobile phone use has become the major determinant of RF-EMF exposure [5]. Recent studies have demonstrated that the specific absorption rate (SAR) of 5-year-old children is 1.5-fold higher than that of 20-year-old adults [6,7]. Therefore, RF-EMF exposure may have a greater impact on children during the developmental stages of the nervous system. ...
Article
Full-text available
Exposure to radiofrequency electromagnetic fields (RF-EMFs) has increased rapidly in children, but information on the effects of RF-EMF exposure to the central nervous system in children is limited. In this study, pups and dams were exposed to whole-body RF-EMF at 4.0 W/kg specific absorption rate (SAR) for 5 h per day for 4 weeks (from postnatal day (P) 1 to P28). The effects of RF-EMF exposure on neurons were evaluated by using both pups’ hippocampus and primary cultured hippocampal neurons. The total number of dendritic spines showed statistically significant decreases in the dentate gyrus (DG) but was not altered in the cornu ammonis (CA1) in hippocampal neurons. In particular, the number of mushroom-type dendritic spines showed statistically significant decreases in the CA1 and DG. The expression of glutamate receptors was decreased in mushroom-type dendritic spines in the CA1 and DG of hippocampal neurons following RF-EMF exposure. The expression of brain-derived neurotrophic factor (BDNF) in the CA1 and DG was significantly lower statistically in RF-EMF-exposed mice. The number of post-synaptic density protein 95 (PSD95) puncta gradually increased over time but was significantly decreased statistically at days in vitro (DIV) 5, 7, and 9 following RF-EMF exposure. Decreased BDNF expression was restricted to the soma and was not observed in neurites of hippocampal neurons following RF-EMF exposure. The length of neurite outgrowth and number of branches showed statistically significant decreases, but no changes in the soma size of hippocampal neurons were observed. Further, the memory index showed statistically significant decreases in RF-EMF-exposed mice, suggesting that decreased synaptic density following RF-EMF exposure at early developmental stages may affect memory function. Collectively, these data suggest that hindered neuronal outgrowth following RF-EMF exposure may decrease overall synaptic density during early neurite development of hippocampal neurons.
... Indeed, one of the biggest EMF-related concerns that the scientific community is facing is the impact of the electromagnetic radiation on neural development, particularly as several reports have described severe effects on neural development, 18,30 although other studies have failed to observe significant effects. 31 One common explanation for this is the low thickness of a child's skull, 32 but the higher severity could be due to the higher density of stem cells present in the first stages of development. 33,34 Indeed, many studies have reported significant effects on embryonic stem cells. ...
Article
Full-text available
Many aspects of chemistry and biology are mediated by electromagnetic field (EMF) interactions. The central nervous system (CNS) is particularly sensitive to EMF stimuli. Studies have explored the direct effect of different EMFs on the electrical properties of neurons in the last two decades, particularly focusing on the role of voltage‐gated ion channels (VGCs). This work aims to systematically review published evidence in the last two decades detailing the effects of EMFs on neuronal ion channels as per the PRISM guidelines. Following a predetermined exclusion and inclusion criteria, 22 papers were included after searches on three online databases. Changes in calcium homeostasis, attributable to the voltage‐gated calcium channels, were found to be the most commonly reported result of EMF exposure. EMF effects on the neuronal landscape appear to be diverse and greatly dependent on parameters, such as the field's frequency, exposure time, and intrinsic properties of the irradiated tissue, such as the expression of VGCs. Here, we systematically clarify how neuronal ion channels are particularly affected and differentially modulated by EMFs at multiple levels, such as gating dynamics, ion conductance, concentration in the membrane, and gene and protein expression. Ion channels represent a major transducer for EMF‐related effects on the CNS. This work aims to systematically review published evidence in the last two decades detailing the effects of electromagnetic fields (EMFs) on neuronal ion channels as per the PRISM guidelines. Here, we systematically clarify how neuronal ion channels are particularly affected and differentially modulated by EMFs at multiple levels, such as gating dynamics, ion conductance, concentration in the membrane, and gene and protein expression.
... In Ref. [216], the authors have claimed that heating of the tissue by greater than 1°C affects the behavioural and biological functioning. Moreover, in Ref. [217], it is revealed that the children's head absorbs radio frequency two times more than that of the adults' head; however, in the case of skulls' bone marrow, it is 10 times more than adults. In Ref. [218], a study is presented which reports that the mobile phone radiation may cause the altering of protein expression in human skin cells. ...
Article
The underlay spectrum access is a very prominent technique in cognitive radio (CR) communication systems in which the primary users (PUs) share the spectrum with the cognitive users (CUs), simultaneously. However, the PU communication is protected by constraining the CUs' transmission power in such a way that the interference power introduced at the PU receiver is under the tolerable limits. In this comprehensive survey, we have presented the general framework of CR communication technology and emphasized on the spectrum accessing and sharing techniques. Various approaches of the optimal power allocation to CUs, namely, the game theory, price auction, convex optimization and iterative water-filling are presented. Moreover, to address the random nature of channel, the performance metrics analysis with the perfect and imperfect channel state information is also illustrated. Finally, the potential issues and research challenges for power management in the CR communication systems are presented which need to be explored.
Article
Despite their benefits, technological devices such as cell phones may also have deleterious effects on human health. Considerable debate continues concerning the effects of the electromagnetic field (EMF) emitted during cell phone use on human health. We investigated the effects of exposure to 900 megahertz (MHz) EMF during mid to late adolescence on the rat liver. Control (ContGr), sham (ShmGr) and EMF (EMFGr) groups of female rats were established. We exposed the EMFGr rats daily to 900 MHz EMF on postnatal days 35−59. ShmGr rats underwent sham procedures. No procedure was performed on ContGr rats. Rats were sacrificed on postnatal day 60 and the livers were extracted. One part of the liver was stained with Masson’s trichrome or hematoxylin and eosin. The remaining tissue was used to measure oxidative stress markers including malondialdehyde, glutathione, catalase, superoxide dismutase, 8-hydroxydeoxyguanosine (8-OHdG) and nitrotyrosine. Total antioxidant status and total oxidant status were used to calculate the oxidative stress index. We found normal hepatic morphology in the ContGr and ShmGr groups. The EMFGr group exhibited occasional irregularities in the radial arrangement of hepatocytes, cytoplasmic vacuolization, hemorrhage, sinusoid expansion, hepatocyte morphology and edema. Biochemical analysis revealed that 8-OHdG and SOD levels in EMFGr decreased significantly compared to the ContGr and ShmGr groups. Exposure to a continuous 900 MHz EMF for 1 h daily during mid to late adolescence may cause histopathological and biochemical alterations in hepatic tissue.
Article
Purpose The purpose of this paper is to determine the impact of human age on the distribution of electric field and absorbed energy that originates from a mobile phone. Design/methodology/approach This research was performed for frequencies of 900, 1800 and 2100 MHz, which are used in a mobile communication system. To obtain the most accurate results, 3 D realistic model of the child’s head has been created whereby the dimensions of this model correspond to the dimensions of a seven-year-old child. Distribution of the electric field and specific absorption rate (SAR) through the child’s head was obtained by numerical analysis based on the finite integration technique. Findings The results discover that amount of absorbed energy is greater in the surface layers of the child’s head model when the electromagnetic (EM) characteristics of tissues are adjusted for the child. This deviation corresponds to different EM characteristics of biological tissues and organs of an adult person compared to a child. Research limitations/implications The study deals with penetrated electrical field and absorbed EM field energy. There is space for further studies of other EM field effects (e.g. thermal effects). Practical implications The analysis of obtained results leads to idea that mobile phones and devices aimed for children using should be modified to provide SAR values inside prescribed standards. Social implications The obtained results are foundation for future research on influence of EM fields of mobile devices on human health. Originality/value The proposed procedure offers the model for accurate estimation and quality analysis of SAR and EM field distribution inside child head tissue.
Article
Full-text available
Radiofrequency radiation (RFR), used for wireless communications and “smart” building technologies, including the “Internet of Things,” is increasing rapidly. As both RFR exposures and scientific evidence of harmful effects increase apace, it is timely to heed calls to include low RFR levels as a performance indicator for the health, safety and well-being of occupants and the environment. Adverse biochemical and biological effects at commonly experienced RFR levels indicate that exposure guidelines for the U.S., Canada and other countries, are inadequate to protect public health and the environment. Some industry liability insurance providers do not offer coverage against adverse health effects from radiation emitted by wireless technologies, and insurance authorities deem potential liability as “high.” Internationally, governments have enacted laws, and medical and public health authorities have issued recommendations, to reduce and limit exposure to RFR. There is urgent need to implement strategies for no- or low-RFR emitting technologies, and shielding, in building design and retrofitting. These strategies include installing wired (not wireless) Internet networks, corded rather than cordless phones, and cable or wired connections in building systems (e.g., mechanical, lighting, security). Building science can profit from decades of work to institute performance parameters, operationalizing prudent guidelines and best practices. The goal is to achieve RFR exposures that are ALARA, “As Low As Reasonably Achievable.” We also challenge the business case of wireless systems, because wired or cabled connections are faster, more reliable and secure, emit substantially less RFR, and consume less energy in a sector with rapidly escalating green-house gas emissions.
Chapter
Electromagnetic radiation, defined as the total amount of electromagnetic quantity that a target elementary surface is exposed to, is one of the main byproducts from the advancement and wide deployment of wireless distributed systems and ad hoc networks consisting of increasingly more powerful devices and diverse technology. Nevertheless, the extreme benefits of the latter have resulted in the emergence of a new research area in algorithmic network design, with main objective the control of the emitted radiation within such systems. In this chapter, we explore this new research area by presenting two quite distinct approaches for radiation control in wireless distributed systems. In particular, we first study the minimum radiation path problem of finding the lowest radiation trajectory of a person moving from a source to a destination point within the area of a network of wireless devices; this is particularly relevant in smart buildings. Second, we study the problem of efficiently charging a set of rechargeable nodes using a set of wireless energy chargers, under safety constraints on the electromagnetic radiation incurred. For both these problems, we provide hardness indications and theoretical results highlighting interesting structural and algorithmic properties. Furthermore, we present and analyze efficient algorithms and heuristics for approximating optimal solutions, namely minimum radiation trajectories and charging schemes, respectively. Finally, we present experimental evidence that not only verifies our theoretical results but also provide new insights that we could not obtain through analysis due to the inherent complexity of these problems.
Article
Full-text available
Background For more than 20 years, the potential health risks of radiofrequency electromagnetic field (RF EMF) exposure from mobile communication devices on children and adolescents have been examined because they are considered sensitive population groups; however, it remains unclear whether such exposure poses any particular risk to them. Objectives The aim of this review was to systematically analyze and evaluate the physiological and health-related effects of RF EMF exposures from wireless communication devices (mobile phones, cordless phones, Bluetooth, etc.) on children and adolescents. Methods This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Methodological limitations in individual studies were assessed using the Office of Health Assessment and Translation (OHAT) Risk-of-Bias Rating Tool for Human and Animal Studies. Results A total of 42 epidemiological and 11 experimental studies were eligible for this review. Most of the studies displayed several methodological weaknesses that limited the internal validity of the results. Due to a lack of consistency regarding the outcomes as well as the lack of scientific rigor in most reviewed studies, the body of evidence for the effects of RF EMF of mobile communication devices on subjective symptoms, cognition, and behavior in children and adolescents was low to inadequate. Evidence from the studies investigating early childhood development, brain activity, cancer, and physiological parameters was considered inadequate for drawing conclusions about possible effects. Discussion Overall, the body of evidence allows no final conclusion on the question whether exposure to RF EMF from mobile communication devices poses a particular risk to children and adolescents. There has been rapid development in technologies generating RF EMF, which are extensively used by children and adolescents. Therefore, we strongly recommend high-quality systematic research on children and adolescents, since they are generally considered as sensitive age groups.
Chapter
As neurodevelopmental and neuro-immune-psychiatric issues are increasing at an alarming rate, infants and children are among the most vulnerable populations. Understanding the anatomic and physiologic differences between children and adults is important in addressing nutritional support for metabolic and detoxification pathways, neurotransmitters, and genetic individuality. Supporting gut, brain, and immune health offers children the opportunity to reach their optimal potential.
Article
The design, simulations, and optimized results for a novel low specific absorption rate (SAR) monopole antenna on a single artificial magnetic conductor (AMC) cell are described in this paper. Simulated results show a reduction close to 70% in the 1 g ps SAR for the developed monopole antenna with the AMC in comparison to the monopole antenna without AMC. This allows higher radiation efficiency, battery drain reduction as well as mobile terminal user health risks reduction.
Article
Full-text available
Earlier animal studies have provided evidence that non-Hodgkin lymphoma (NHL) may be caused by exposure to radiofrequency (RF) radiation. This was recently confirmed by the U.S. National Toxicology (NTP) study that showed an increased incidence of malignant lymphoma in female mice exposed to the GSM modulated or the CDMA modulated cell phone RF radiation. Primary central nervous system lymphoma (PCNSL) is a rare malignancy in humans with poor prognosis. An increasing incidence has been reported in recent years. Based on a case-report we present the hypothesis that use of the hand-held mobile phone may be a risk factor for PCNSL. The increasing incidence of non-Hodgkin lymphoma in Sweden is discussed in relation to etiologic factors.
Article
Full-text available
Brainwave entrainment (BWE) refers to the use of external stimuli to produce a frequency following response of brainwaves to match the frequency of the external stimuli. The current paper is a brief review and aims to focus on BWE process as a therapeutic approach to vitalize cognitive functioning along with well-being of individuals. Also, it aims to observe the prospect of BWE as an intervention in India. Thirty studies met the criteria and were critically analyzed on the basis of demographic and clinical variables. Findings suggest a shift from the physiological to psychological implications of BWE. Review suggests that there is a dearth of longitudinal studies and with children. However, some studies have highlighted improvement in overall functioning after BWE sessions. The paper suggests that there is a need to conduct studies on clinical and child population to apply BWE as an intervention to promote overall well-being in children.
Preprint
The expanding use of devices emitting Pulsed Telecommunication Signals (PTS) has launched a serious debate over the possible effects of electromagnetic radiation (EMR) on living organisms. Our previous work has indicated that PTS exposure alters Amyloid Precursor Protein (APP) and alpha-synuclein (α-syn) metabolism in human cells of neural origin, providing a possible connection between exposure and neurodegeneration. This investigation aimed to reveal, in vitro in human non-neural cells (HEK293), the aftermath of the same exposure on the processing of APP and α-syn. Data presented here, indicate changes in APP metabolism, acquisition of different cellular topologies of the newly generated APP fragments, changes in monomeric α-syn accumulation and multimerization, indicating that APP and α-syn processing is possibly altered in the periphery by EMR. These effects are accompanied by a substantial increase in the levels of Reactive Oxygen Species (ROS). Further investigation is required in order to provide insights into the interaction of PTS with non-neural cells affecting the peripheral systemic functional stability. This is necessary because nowadays whole body human exposure from various EMR sources is a fact in normal life with the valid estimation that they may be increased in view of the forthcoming 5G telecommunications network implementation.
Article
The advent of wireless technologies has revolutionized the way we communicate. The steady upsurge in the use of mobile phone all over the world in the last two decades, while triggered economic growth, has caused substantial damage to the environment, both directly and indirectly. The electromagnetic radiation generated from mobile phones, radio-based stations, and phone towers, high-voltage power lines have been reported which leads to the variety of health scares such as the risk of cancer in human beings and adverse effects in animals, birds, etc. Though the usage of such radiation emitting from mobile phones has risen steeply, there is a lack of proper knowledge about the associated risks. The review provides the latest research evidence based both on in vitro studies, in vivo studies, and possible gaps in our knowledge. Moreover, the present review also summarizes available literature in this subject, reports and studies which will help to form guidelines for its exposure limits to the public. Abbreviations: Continuous Wave: CW; Code Division Multiple Access: CDMA; Global System for Mobile Communications: GSM; Peripheral Blood Mononuclear Cell: PBMC; Radiofrequency: RF; Radiofrequency radiation: RFR; Universal Mobile Telecommunications System: UMTS; Wideband Code Division Multiple Access: WCDMA; Specific Absorption Rate: SAR; National Toxicology Program: NTP; amplitude-modulated or amplitude-modulation: AM; Electromagnetic frequencies: EMF; confidence interval: CI; Gigahertz: GHz; odds ratio: OR; incidence ratio: IR; reactive oxygen species: ROS; specific absorption rate: SAR; International Agency of Research on Cancer: IARC; single-strand breaks: SSB; double-strand breaks: DSB (7,12-Dimethylbenz[a]anthracene): DMBA; Hour: h; international commission on non-ionizing radiation protection: ICNIRP; extremely low frequency: ELFl; microtesla: mT; Gigahertz: GHz; hertz: Hz; decibel: dB; kilometer: Km; Watt per square meter: W/m2; Hour: h; positron emission tomography: PET.
Article
The MOBI-Kids case-control study on wireless phone use and brain tumor risk in childhood and adolescence included the age group 10–24 years diagnosed between 2010 and 2015. Overall no increased risk was found although for brain tumors in the temporal region an increased risk was found in the age groups 10–14 and 20–24 years. Most odds ratios (ORs) in MOBI-Kids were <1.0, some statistically significant, suggestive of a preventive effect from RF radiation; however, this is in contrast to current knowledge about radiofrequency (RF) carcinogenesis. The MOBI-Kids results are not biologically plausible and indicate that the study was flawed due to methodological problems. For example, not all brain tumor cases were included since central localization was excluded. Instead, all brain tumor cases should have been included regardless of histopathology and anatomical localization. Only surgical controls with appendicitis were used instead of population-based controls from the same geographical area as for the cases. In fact, increased incidence of appendicitis has been postulated to be associated with RF radiation which makes selection of control group in MOBI-Kids questionable. Start of wireless phone use up to 10 years before diagnosis was in some analyses included in the unexposed group. Thus, any important results demonstrating late carcinogenesis, a promoter effect, have been omitted from analysis and may underestimate true risks. Linear trend was in some analyses statistically significant in the calculation of RF-specific energy and extremely low frequency (ELF)-induced current in the center of gravity of the tumor. Additional case-case analysis should have been performed. The data from this study should be reanalyzed using unconditional regression analysis adjusted for potential confounding factors to increase statistical power. Then all responding cases and controls could be included in the analyses. In sum, we believe the results as reported in this paper seem uninterpretable and should be dismissed.
Article
Full-text available
Industrial era 4.0 provides accessibility to smartphone use on early childhood. The negative or positive impact depending on how parents introduce smartphones to children through parental mediation strategies. Parents’ character plays a role in shaping children’s behavior and discipline, especially parents with mindful parenting. This study aims to examine the relationship between mindful parenting and parental mediation from the psychological and Islamic perspective. We used a mixed method with sequential explanatory design. Mindfulness in Parenting Questionnaire (MIPQ) and Parental Mediation Questionnaire (PMQ) was used as measuring instrument with a total of 131 parents who have children aged 3-6 years participated in this study. The results show that mindful parenting correlates significantly to the active mediation strategy while its relationship was weak with restrictive mediation. In the Islamic perspective, when parents rely on all responsibilities and rights that must be given to children with the intention of worshiping Allah, parents will apply the rules to their children according to Islamic law.Industrial era 4.0 provides accessibility to smartphone use on early childhood. The negative or positive impact depending on how parents introduce smartphones to children through parental mediation strategies. Parents’ character plays a role in shaping children’s behavior and discipline, especially parents with mindful parenting. This study aims to examine the relationship between mindful parenting and parental mediation from the psychological and Islamic perspective. We used a mixed method with sequential explanatory design. Mindfulness in Parenting Questionnaire (MIPQ) and Parental Mediation Questionnaire (PMQ) was used as measuring instrument with a total of 131 parents who have children aged 3-6 years participated in this study. The results show that mindful parenting correlates significantly to the active mediation strategy while its relationship was weak with restrictive mediation. In the Islamic perspective, when parents rely on all responsibilities and rights that must be given to children with the intention of worshiping Allah, parents will apply the rules to their children according to Islamic law.
Book
Electromagnetic Hypersensitivity is categorised as a multisymptomatic 'el-allergy' in the Nordic classification of 2000 (R.68.8). Its symptoms are 'certainly real' and it can be a 'disabling condition' (W.H.O., 2005). It was first recorded in the mid 20th century as an occupational illness, but it has now spread into the general population through environmental exposure from increasing levels of electromagnetic fields and radiation. This Summary covers current research on this syndrome, covering EM Sensitivity and EM Hypersensitivity. It includes tables of symptoms, EMF sources and exposure guidelines, along with references to scientific studies. This New Edition adds updates, international doctors' protocols, aspects of quantum biology, evidence for sensitivity in animals and plants, case studies, disability issues and human rights.
Article
Wireless Power Transfer has become a commercially viable technology to charge devices because of the convenience of no power wiring and the reliability of continuous power supply. This paper concerns the fundamental issue of wireless charger placement with electromagnetic radiation (EMR) safety. Although there are a few wireless charging schemes consider EMR safety, none of them addresses the charger placement issue. In this paper, we propose PESA, a wireless charger Placement scheme that guarantees EMR SAfety for every location on the plane. First, we discretize the whole charging area and formulate the problem into the Multidimensional 0/1 Knapsack (MDK) problem. Second, we propose a fast approximation algorithm to the MDK problem. Third, we propose a near optimal scheme to improve speed by double partitioning the area. We prove that the output of our algorithm is better than (1-ε) of the optimal solution to PESA with a smaller EMR threshold (1-ε/2)Rt and a larger EMR coverage radius (1+ε/2)D. We conducted both simulations and field experiments to evaluate the performance of our scheme. Our experimental results show that in terms of charging utility, our algorithm outperforms the comparison algorithms.
Article
Full-text available
Objectives: In the present study, we investigated Distortion Product Otoacoustic Emissions in pregnant (Group 1); non-pregnat adult female rabbits (Group 2) and infant rabbits (Group 3). We assessed Distortion Product Otoacoustic Emission amplitudes in both stimulus levels of F2/F1=1.22 and 1.14; and analyzed the amplitude differences in different groups. Methods: Thirty-six New Zealand White rabbits were included into the study. They were divided into three groups. Group 1 consisted of 9 each 13-month-old, adult, pregnant female rabbits. Group 2 consisted of 9 each 13-month-old, adult, non-pregnant female rabbits. Group 3 consisted of 18 each one-month-old, infant rabbits (Nine of them, male; and nine of them, female). In all groups, cochlear functions were assessed by Distortion Product Otoacoustic Emissions at 1.0-8.0 kHz. Stimulus parameters were used as F2/F1=1.22 in the first recording; and 1.14, in the second recording for each of the ears. Results: In all groups (1 to 3), Distortion Product Otoacoustic Emission amplitudes were found as higher with F2/F1:1.22 measurements than F2/F1:1.14 measurements. In F2/F1:1.22; and F2/F1:1.14 measurements seperately; at each Distortion Product Otoacoustic Emission frequencies (1.0-8.0 kHz), the difference between Distortion Product Otoacoustic Emission amplitudes of Group1-3 were analyzed by "Kruskal Wallis Variance Analysis": The statistically significant difference were present at frequencies of 1.5-2.0 kHz and 8.0 kHz for F2/F1:1.22 measurements; and 1.0-2.0 kHz and 4.0-8.0 kHz for F2/F1:1.14 measurements. In F2/F1:1.22 measurements, at 1.5 kHz, the mean value of Group 1 (Pregnant rabbits) was significantly higher than that of Group 3 (Infant rabbits). In F2/F1:1.14 measurements, at 1.0, 4.0 and 8.0 khz, the mean values of Group 1 (Pregnant rabbits) was significantly higher than those of Group 3 (Infant rabbits); and at 1.0, 2.0 and 4.0 kHz, the mean values of Group 2 (Non-pregnant rabbits) were significantly higher than those of Group 3 (Infant rabbits) Conclusion: Our study demonstrated that, in pregnant rabbits, higher corticosteroid levels may cause higher DPOAE amplitudes than infant rabbits by F2/F1:1.14 measurements. In all rabbits and especially in infant rabbits, Distortion Product Otoacoustic Emissions could be taken by F2/F1:1.22 measurements with higher amplitudes. The importance of our study is, when Distortion Product Otoacoustic Emission measurement is planned, measurements should be done using F2/F1: 1.22 to get healthy and accurate results in experimental studies. In measurements made by F2/F1: 1.14, amplitudes can be observed as lower than F2/F1: 1.22 measurements. This decline is evident especially in infant rabbit groups. Water containing medium in the middle ear of infant rabbits may cause the reduce in Distortion Product Otoacoustic Emission amplitudes than adult rabbits at both F2/F1:1.22 and 1.14 measurements.
Article
Full-text available
The aim of our study is to evaluate the possible biological effects of whole-body 1800 MHz GSM-like radiofrequency (RF) radiation exposure on liver oxidative DNA damage and lipid peroxidation levels in nonpregnant, pregnant New Zealand White rabbits, and in their newly borns. Eighteen nonpregnant and pregnant rabbits were used and randomly divided into four groups which were composed of nine rabbits: (i) Group I (nonpregnant control), (ii) Group II (nonpregnant-RF exposed), (iii) Group III (pregnant control), (iv) Group IV (pregnant-RF exposed). Newborns of the pregnant rabbits were also divided into two groups: (v) Group V (newborns of Group III) and (vi) Group VI (newborns of Group III). 1800 MHz GSM-like RF radiation whole-body exposure (15 min/day for a week) was applied to Group II and Group IV. No significant differences were found in liver 8 OHdG/10(6) dG levels of exposure groups (Group II and Group IV) compared to controls (Group I and Group III). However, in Group II and Group IV malondialdehyde (MDA) and ferrous oxidation in xylenol orange (FOX) levels were increased compared to Group I (P < 0.05, Mann-Whitney). No significant differences were found in liver tissue of 8 OHdG/10(6) dG and MDA levels between Group VI and Group V (P > 0.05, Mann-Whitney) while liver FOX levels were found significantly increased in Group VI with respect to Group V (P < 0.05, Mann-Whitney). Consequently, the whole-body 1800 MHz GSM-like RF radiation exposure may lead to oxidative destruction as being indicators of subsequent reactions that occur to form oxygen toxicity in tissues.
Article
Full-text available
The purpose of this study was to reveal the apoptotic cell formation, using histopathological and immunohistochemical methods, in non-pregnant and pregnant New Zealand White rabbits, and in offspring of the pregnant group exposed to GSM modulated signal in 1,800 MHz frequency. Apoptotic cells were detected in the brain, eyes, kidneys, liver, lung, heart, and spleen by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. Histopathological changes were observed in the examined organs. TUNEL positivity was seen in the brain (group VI) and eyes (groups IV and VI). In groups I, II, Ill, and V. the positivity was lesser than 5% and was not taken into account.
Article
Full-text available
OBJECTIVES: There is concern regarding the possible health effects of cellular telephone use. We examined whether the source of funding of studies of the effects of low-level radiofrequency radiation is associated with the results of studies. We conducted a systematic review of studies of controlled exposure to radiofrequency radiation with health-related outcomes (electroencephalogram, cognitive or cardiovascular function, hormone levels, symptoms, and subjective well-being). DATA SOURCES: We searched EMBASE, Medline, and a specialist database in February 2005 and scrutinized reference lists from relevant publications. DATA EXTRACTION: Data on the source of funding, study design, methodologic quality, and other study characteristics were extracted. The primary outcome was the reporting of at least one statistically significant association between the exposure and a health-related outcome. Data were analyzed using logistic regression models. DATA SYNTHESIS: Of 59 studies, 12 (20%) were funded exclusively by the telecommunications industry, 11 (19%) were funded by public agencies or charities, 14 (24%) had mixed funding (including industry), and in 22 (37%) the source of funding was not reported. Studies funded exclusively by industry reported the largest number of outcomes, but were least likely to report a statistically significant result: The odds ratio was 0.11 (95% confidence interval, 0.02-0.78), compared with studies funded by public agencies or charities. This finding was not materially altered in analyses adjusted for the number of outcomes reported, study quality, and other factors. CONCLUSIONS: The interpretation of results from studies of health effects of radiofrequency radiation should take sponsorship into account.
Article
Full-text available
We studied the association between use of mobile and cordless phones and malignant brain tumours. Pooled analysis was performed of two case-control studies on patients with malignant brain tumours diagnosed during 1997-2003 and matched controls alive at the time of study inclusion and one case-control study on deceased patients and controls diagnosed during the same time period. Cases and controls or relatives to deceased subjects were interviewed using a structured questionnaire. Replies were obtained for 1,251 (85%) cases and 2,438 (84%) controls. The risk increased with latency period and cumulative use in hours for both mobile and cordless phones. Highest risk was found for the most common type of glioma, astrocytoma, yielding in the >10 year latency group for mobile phone use odds ratio (OR) = 2.7, 95% confidence interval (CI) = 1.9-3.7 and cordless phone use OR = 1.8, 95% CI = 1.2-2.9. In a separate analysis, these phone types were independent risk factors for glioma. The risk for astrocytoma was highest in the group with first use of a wireless phone before the age of 20; mobile phone use OR = 4.9, 95% CI = 2.2-11, cordless phone use OR = 3.9, 95% CI = 1.7-8.7. In conclusion, an increased risk was found for glioma and use of mobile or cordless phone. The risk increased with latency time and cumulative use in hours and was highest in subjects with first use before the age of 20.
Article
Full-text available
In this corrigendum, the authors would like to report typographic errors in figures 3 and 4 and to suggest a brief amendment to section 3.1 to avoid further misunderstandings. ? Figures 3 and 4: the y-axis tick should read 0.1 instead of 1 in both figure 3 (top) and figure 4 (top). In figure 3 (top), the title should be changed to 'SARwb' instead of 'SARwb,max'. ? Section 3.1. Numerical uncertainty: the following note should be added at the end of the paragraph or as a footnote: 'In order to obtain a worst-case estimate of the numerical uncertainty (table 4), all components were considered as correlated'. The authors would like to express their sincere apologies for the errors in the manuscript.
Article
Full-text available
The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.
Article
Full-text available
Case-control studies have reported inconsistent findings regarding the association between mobile phone use and tumor risk. We investigated these associations using a meta-analysis. We searched MEDLINE (PubMed), EMBASE, and the Cochrane Library in August 2008. Two evaluators independently reviewed and selected articles based on predetermined selection criteria. Of 465 articles meeting our initial criteria, 23 case-control studies, which involved 37,916 participants (12,344 patient cases and 25,572 controls), were included in the final analyses. Compared with never or rarely having used a mobile phone, the odds ratio for overall use was 0.98 for malignant and benign tumors (95% CI, 0.89 to 1.07) in a random-effects meta-analysis of all 23 studies. However, a significant positive association (harmful effect) was observed in a random-effects meta-analysis of eight studies using blinding, whereas a significant negative association (protective effect) was observed in a fixed-effects meta-analysis of 15 studies not using blinding. Mobile phone use of 10 years or longer was associated with a risk of tumors in 13 studies reporting this association (odds ratio = 1.18; 95% CI, 1.04 to 1.34). Further, these findings were also observed in the subgroup analyses by methodologic quality of study. Blinding and methodologic quality of study were strongly associated with the research group. The current study found that there is possible evidence linking mobile phone use to an increased risk of tumors from a meta-analysis of low-biased case-control studies. Prospective cohort studies providing a higher level of evidence are needed.
Article
Full-text available
The exposure of male mice to radiofrequency radiations from mobile phone (GSM) base stations at a workplace complex and residential quarters caused 39.78 and 46.03%, respectively, in sperm head abnormalities compared to 2.13% in control group. Statistical analysis of sperm head abnormality score showed that there was a significant (p < 0.05) difference in occurrence of sperm head abnormalities in test animals. The major abnormalities observed were knobbed hook, pin-head and banana-shaped sperm head. The occurrence of the sperm head abnormalities was also found to be dose dependent. The implications of the observed increase occurrence of sperm head abnormalities on the reproductive health of humans living in close proximity to GSM base stations were discussed.
Article
Full-text available
The Hardell-group conducted during 1997-2003 two case control studies on brain tumours including assessment of use of mobile phones and cordless phones. The questionnaire was answered by 905 (90%) cases with malignant brain tumours, 1,254 (88%) cases with benign tumours and 2,162 (89%) population-based controls. Cases were reported from the Swedish Cancer Registries. Anatomical area in the brain for the tumour was assessed and related to side of the head used for both types of wireless phones. In the current analysis we defined ipsilateral use (same side as the tumour) as >or=50% of the use and contralateral use (opposite side) as <50% of the calling time. We report now further results for use of mobile and cordless phones. Regarding astrocytoma we found highest risk for ipsilateral mobile phone use in the >10 year latency group, OR=3.3, 95% CI=2.0-5.4 and for cordless phone use OR=5.0, 95% CI=2.3-11. In total, the risk was highest for cases with first use <20 years age, for mobile phone OR=5.2, 95% CI=2.2-12 and for cordless phone OR=4.4, 95% CI=1.9-10. For acoustic neuroma, the highest OR was found for ipsilateral use and >10 year latency, for mobile phone OR=3.0, 95% CI=1.4-6.2 and cordless phone OR=2.3, 95% CI=0.6-8.8. Overall highest OR for mobile phone use was found in subjects with first use at age <20 years, OR=5.0, 95% CI 1.5-16 whereas no association was found for cordless phone in that group, but based on only one exposed case. The annual age-adjusted incidence of astrocytoma for the age group >19 years increased significantly by +2.16%, 95% CI +0.25 to +4.10 during 2000-2007 in Sweden in spite of seemingly underreporting of cases to the Swedish Cancer Registry. A decreasing incidence was found for acoustic neuroma during the same period. However, the medical diagnosis and treatment of this tumour type has changed during recent years and underreporting from a single center would have a large impact for such a rare tumour.
Article
Full-text available
The debate regarding the health effects of low-intensity electromagnetic radiation from sources such as power lines, base stations, and cell phones has recently been reignited. In the present review, the authors attempt to address the following question: is there epidemiologic evidence for an association between long-term cell phone usage and the risk of developing a brain tumor? Included with this meta-analysis of the long-term epidemiologic data are a brief overview of cell phone technology and discussion of laboratory data, biological mechanisms, and brain tumor incidence. In order to be included in the present meta-analysis, studies were required to have met all of the following criteria: (i) publication in a peer-reviewed journal; (ii) inclusion of participants using cell phones for > or = 10 years (ie, minimum 10-year "latency"); and (iii) incorporation of a "laterality" analysis of long-term users (ie, analysis of the side of the brain tumor relative to the side of the head preferred for cell phone usage). This is a meta-analysis incorporating all 11 long-term epidemiologic studies in this field. The results indicate that using a cell phone for > or = 10 years approximately doubles the risk of being diagnosed with a brain tumor on the same ("ipsilateral") side of the head as that preferred for cell phone use. The data achieve statistical significance for glioma and acoustic neuroma but not for meningioma. The authors conclude that there is adequate epidemiologic evidence to suggest a link between prolonged cell phone usage and the development of an ipsilateral brain tumor.
Article
Full-text available
At certain frequencies, when the human head becomes a resonant structure, the power absorbed by the head and neck, when the body is exposed to a vertically polarized plane wave propagating from front to back, becomes significantly larger than would ordinarily be expected from its shadow cross section. This has possible implications in the study of the biological effects of electromagnetic fields. Additionally the frequencies at which these resonances occur are not readily predicted by simple approximations of the head in isolation. In order to determine these resonant conditions an anatomically based model of the whole human body has been used, with the finite-difference time-domain (FDTD) algorithm to accurately determine field propagation, specific absorption rate (SAR) distributions and power absorption in both the whole body and the head region (head and neck). This paper shows that resonant frequencies can be determined using two methods. The first is by use of the accurate anatomically based model (with heterogeneous tissue properties) and secondly using a model built from parallelepiped sections (for the torso and legs), an ellipsoid for the head and a cylinder for the neck. This approximation to the human body is built from homogeneous tissue the equivalent of two-thirds the conductivity and dielectric constant of that of muscle. An IBM SP-2 supercomputer together with a parallel FDTD code has been used to accommodate the large problem size. We find resonant frequencies for the head and neck at 207 MHz and 193 MHz for the isolated and grounded conditions, with absorption cross sections that are respectively 3.27 and 2.62 times the shadow cross section.
Article
Full-text available
This paper compares the maximum allowable powers of some typical cellular telephones at 835 and 1900 MHz for compliance with the limits of specific absorption rates (SAR) given in ANSI/IEEE, ICNIRP and the proposed modification of ANSI/IEEE safety guidelines. It is shown that the present ANSI/IEEE guideline is the most conservative with the ICNIRP guidelines allowing a maximum radiated powerthat is 2.5-3 times higher, and the proposed IEEE modification of treating pinna as an extremity tissue the least conservative allowing even higher radiated powers by up to 50%. The paper also expands the previously reported study of energy deposition in models of adults versus children to two different and distinct anatomically-based models of the adult head, namely the Utah model and the 'Visible Man' model, each of which is increased or reduced by the voxel size to obtain additional head models larger or smaller in all dimensions by 11.1% or -9.1%, respectively. The peak 1 g body-tissue SAR calculated using the widely accepted FDTD method for smaller models is up to 56% higher at 1900 MHz and up to 20% higher at 835 MHz compared to the larger models, with the average models giving intermediate SARs. Also given in the paper is a comparison of the peak 1 g and 10 g SARs for two different anatomically-based models with 6 mm thick smooth plastic ear models used for SAR compliance testing. The SARs obtained with the insulating plastic ear models are up to two or more times smaller than realistic anatomic models. We propose a 2 mm thin shell phantom with lossy ear that should give SARs within +/- 15% of those of anatomic models.
Article
Full-text available
Increasingly, mobile telephones are becoming pocket-sized and are being left in the shirt pocket with a connection to the ear for hands-free operation. We have considered an anatomic model of the chest and a planar phantom recommended by US FCC to compare the peak 1 and 10 g SARs for four typical cellular telephones, two each at 835 and 1900 MHz. An agreement within +/- 10% is obtained between calculated and experimental 1 and 10 g SARs for various separations (2-8 mm) from the planar phantom used to represent different thicknesses of the clothing both for the antenna away from or turned back towards the body. Because of the closer placement of the antennas relative to the body, the peak 1 and 10 g SARs are considerably higher (by a factor of 2-7) for pocket-mounted telephones as compared to the SARs obtained using a 6 mm thick plastic ear head model--a procedure presently accepted both in the US and Europe. This implies that a telephone tested for SAR compliance against the model of the head may be severely out of compliance if it were placed in the shirt pocket.
Article
Full-text available
The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile phone electromagnetic fields of different strengths. We found highly significant (p< 0.002) evidence for neuronal damage in the cortex, hippocampus, and basal ganglia in the brains of exposed rats.
Article
Full-text available
In this paper, the specific absorption rate (SAR) in scaled human head models is analysed to study possible differences between SAR in the heads of adults and children and for assessment of compliance with the international safety guidelines, while using a mobile phone. The finite-difference time-domain method (FDTD) has been used for calculating SAR values for models of both children and adults, at 900 and 1800 MHz. Maximum 1 g averaged SAR (SAR1 g) and maximum 10 g averaged SAR (SAR10 g) have been calculated in adults and scaled head models for comparison and assessment of compliance with ANSI/IEEE and European guidelines. Results show that peak SAR1 g and peak SAR10 g all trend downwards with decreasing head size but as head size decreases, the percentage of energy absorbed in the brain increases. So, higher SAR in children's brains can be expected depending on whether the thickness of their skulls and surrounding tissues actually depends on age. The SAR in eyes of different sizes, as a critical organ, has also been studied and very similar distributions for the full size and the scaled models have been obtained. Standard limits can only be exceeded in the unpractical situation where the antenna is located at a very short distance in front of the eye.
Article
Full-text available
We reviewed articles using computational RF dosimetry to compare the Specific Anthropomorphic Mannequin (SAM) to anatomically correct models of the human head. Published conclusions based on such comparisons have varied widely. We looked for reasons that might cause apparently similar comparisons to produce dissimilar results. We also looked at the information needed to adequately compare the results of computational RF dosimetry studies. We concluded studies were not comparable because of differences in definitions, models, and methodology. Therefore we propose a protocol, developed by an IEEE standards group, as an initial step in alleviating this problem. The protocol calls for a benchmark validation study comparing the SAM phantom to two anatomically correct models of the human head. It also establishes common definitions and reporting requirements that will increase the comparability of all computational RF dosimetry studies of the human head.
Article
Full-text available
This study was conducted to determine a possible relationship between regular cell phone use and different human semen attributes. The history-taking of men in our university clinic was supplemented with questions concerning cell phone use habits, including possession, daily standby position and daily transmission times. Semen analyses were performed by conventional methods. Statistics were calculated with SPSS statistical software. A total of 371 were included in the study. The duration of possession and the daily transmission time correlated negatively with the proportion of rapid progressive motile sperm (r = -0.12 and r = -0.19, respectively), and positively with the proportion of slow progressive motile sperm (r = 0.12 and r = 0.28, respectively). The low and high transmitter groups also differed in the proportion of rapid progressive motile sperm (48.7% vs. 40.6%). The prolonged use of cell phones may have negative effects on the sperm motility characteristics.
Article
Full-text available
To study the use of cellular and cordless telephones and the risk for malignant brain tumours. Two case-control studies on malignant brain tumours diagnosed during 1997-2003 included answers from 905 (90%) cases and 2,162 (89%) controls aged 20-80 years. We present pooled analysis of the results in the two studies. Cumulative lifetime use for >2,000 h yielded for analogue cellular phones odds ratio (OR)=5.9, 95% confidence interval (CI)=2.5-14, digital cellular phones OR=3.7, 95% CI=1.7-7.7, and for cordless phones OR=2.3, 95% CI=1.5-3.6. Ipsilateral exposure increased the risk for malignant brain tumours; analogue OR=2.1, 95% CI=1.5-2.9, digital OR=1.8, 95% CI=1.4-2.4, and cordless OR=1.7, 95% CI=1.3-2.2. For high-grade astrocytoma using >10 year latency period analogue phones yielded OR=2.7, 95% CI=1.8-4.2, digital phones OR=3.8, 95% CI=1.8-8.1, and cordless phones OR=2.2, 95% CI=1.3-3.9. In the multivariate analysis all phone types increased the risk. Regarding digital phones OR=3.7, 95% CI=1.5-9.1 and cordless phones OR=2.1, 95% CI=0.97-4.6 were calculated for malignant brain tumours for subjects with first use use <20 years of age, higher than in older persons. Increased risk was obtained for both cellular and cordless phones, highest in the group with >10 years latency period.
Article
Full-text available
Handheld mobile phones were introduced in Denmark and Sweden during the late 1980s. This makes the Danish and Swedish populations suitable for a study aimed at testing the hypothesis that long-term mobile phone use increases the risk of parotid gland tumors. In this population-based case-control study, the authors identified all cases aged 20–69 years diagnosed with parotid gland tumor during 2000–2002 in Denmark and certain parts of Sweden. Controls were randomly selected from the study population base. Detailed information about mobile phone use was collected from 60 cases of malignant parotid gland tumors (85% response rate), 112 benign pleomorphic adenomas (88% response rate), and 681 controls (70% response rate). For regular mobile phone use, regardless of duration, the risk estimates for malignant and benign tumors were 0.7 (95% confidence interval: 0.4, 1.3) and 0.9 (95% confidence interval: 0.5, 1.5), respectively. Similar results were found for more than 10 years' duration of mobile phone use. The risk estimate did not increase, regardless of type of phone and amount of use. The authors conclude that the data do not support the hypothesis that mobile phone use is related to an increased risk of parotid gland tumors.
Article
Full-text available
There is concern regarding the possible health effects of cellular telephone use. We examined whether the source of funding of studies of the effects of low-level radiofrequency radiation is associated with the results of studies. We conducted a systematic review of studies of controlled exposure to radiofrequency radiation with health-related outcomes (electroencephalogram, cognitive or cardiovascular function, hormone levels, symptoms, and subjective well-being). We searched EMBASE, Medline, and a specialist database in February 2005 and scrutinized reference lists from relevant publications. Data on the source of funding, study design, methodologic quality, and other study characteristics were extracted. The primary outcome was the reporting of at least one statistically significant association between the exposure and a health-related outcome. Data were analyzed using logistic regression models. Of 59 studies, 12 (20%) were funded exclusively by the telecommunications industry, 11 (19%) were funded by public agencies or charities, 14 (24%) had mixed funding (including industry), and in 22 (37%) the source of funding was not reported. Studies funded exclusively by industry reported the largest number of outcomes, but were least likely to report a statistically significant result: The odds ratio was 0.11 (95% confidence interval, 0.02-0.78), compared with studies funded by public agencies or charities. This finding was not materially altered in analyses adjusted for the number of outcomes reported, study quality, and other factors. The interpretation of results from studies of health effects of radiofrequency radiation should take sponsorship into account.
Article
Full-text available
The objective of this nationwide study was to assess the association between cellular phone use and development of parotid gland tumors (PGTs). The methods were based on the international INTERPHONE study that aimed to evaluate possible adverse effects of cellular phone use. The study included 402 benign and 58 malignant incident cases of PGTs diagnosed in Israel at age 18 years or more, in 2001–2003, and 1,266 population individually matched controls. For the entire group, no increased risk of PGTs was observed for ever having been a regular cellular phone user (odds ratio = 0.87; p = 0.3) or for any other measure of exposure investigated. However, analysis restricted to regular users or to conditions that may yield higher levels of exposure (e.g., heavy use in rural areas) showed consistently elevated risks. For ipsilateral use, the odds ratios in the highest category of cumulative number of calls and call time without use of hands-free devices were 1.58 (95% confidence interval: 1.11, 2.24) and 1.49 (95% confidence interval: 1.05, 2.13), respectively. The risk for contralateral use was not significantly different from 1. A positive dose-response trend was found for these measurements. Based on the largest number of benign PGT patients reported to date, our results suggest an association between cellular phone use and PGTs.
Article
Full-text available
We evaluated long-term use of mobile phones and the risk for brain tumours in case-control studies published so far on this issue. We identified ten studies on glioma and meta-analysis yielded OR = 0.9, 95% CI = 0.8-1.1. Latency period of > or =10-years gave OR = 1.2, 95% CI = 0.8-1.9 based on six studies, for ipsilateral use (same side as tumour) OR = 2.0, 95% CI = 1.2-3.4 (four studies), but contralateral use did not increase the risk significantly, OR = 1.1, 95% CI = 0.6-2.0. Meta-analysis of nine studies on acoustic neuroma gave OR = 0.9, 95% CI = 0.7-1.1 increasing to OR = 1.3, 95% CI = 0.6-2.8 using > or =10-years latency period (four studies). Ipsilateral use gave OR = 2.4, 95% CI = 1.1-5.3 and contra-lateral OR = 1.2, 95% CI = 0.7-2.2 in the > or =10-years latency period group (three studies). Seven studies gave results for meningioma yielding overall OR = 0.8, 95% CI = 0.7-0.99. Using > or =10-years latency period OR = 1.3, 95% CI = 0.9-1.8 was calculated (four studies) increasing to OR = 1.7, 95% CI = 0.99-3.1 for ipsilateral use and OR = 1.0, 95% CI = 0.3-3.1 for contralateral use (two studies). We conclude that this meta-analysis gave a consistent pattern of an association between mobile phone use and ipsilateral glioma and acoustic neuroma using > or =10-years latency period.
Article
Full-text available
A 2-mm-thick plastic shell with 5-10-mm-thick tapered plastic spacer in the shape of a "pinna"-specific anthropomorphic mannequin (SAM) head model is being used for determination of the specific absorption rate (SAR) of cellular telephones for compliance testing against IEEE and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Safety Guidelines used in the U.S. and Europe, respectively. We have used three-dimensional computer-aided design files of the SAM Model with 1-mm resolution to calculate peak 1- and 10-g SAR for "cheek" and "15°-tilted" positions of some typical telephones for comparison with those for three anatomic models of the head to show that the SAR obtained for SAM is up to two or more times smaller than for anatomic models. This is due to the shift of the high SAR locations to a low radiated fields region away from the antenna, particularly at 835 MHz, and a substantial physical separation from the absorptive phantom at 1900 MHz. Due to the use of lossless plastic for the "pinna," another handicap of the SAM model is the total lack of knowledge of 1- or 10-g SAR in the pinna tissues required by all safety guidelines (current or proposed). To remedy this situation, we propose a modified SAM with a lossy "pinna," for which 1- and 10-g SARs are relatively close to those for anatomic models, provided we use a fluid of higher conductivity than that currently used for compliance testing at 835 MHz. Lastly, we compare the implications of the current IEEE and ICNIRP guidelines and the newly proposed IEEE guidelines with a relaxed limit of 4.0 W/kg for any 10-g of tissue of the pinna for maximum allowable powers for cellular telephones at 835 and 1900 MHz to show that the newly proposed relaxed IEEE limits will allow radiated powers that may be 8-16 times those permitted by the current IEEE Standard and up to two times higher than those permitted under ICNIRP guidelines used in over 30 countries.
Article
Full-text available
The authors have used the finite-difference time-domain method and a new millimeter-resolution anatomically based model of the human to study electromagnetic energy coupled to the head due to mobile telephones at 835 and 1900 MHz. Assuming reduced dimensions characteristic of today's mobile telephones, the authors have obtained SAR distributions for two different lengths of monopole antennas of lengths λ/4 and 3λ/8 for a model of the adult male and reduced-scale models of 10- and 5-year-old children and find that peak one-voxel and 1-g SARs are larger for the smaller models of children, particularly at 835 MHz. Also, a larger in-depth penetration of absorbed energy for these smaller models is obtained. The authors have also studied the effect of using the widely disparate tissue properties reported in the literature and of using homogeneous instead of the anatomically realistic heterogeneous models on the SAR distributions. Homogeneous models are shown to grossly overestimate both the peak 1-voxel and 1-g SARs. Last, the authors show that it is possible to use truncated one-half or one-third models of the human head with negligible errors in the calculated SAR distributions. This simplification will allow considerable savings in computer memory and computation times
Article
Methods An interview-based case-control study with 2708 glioma and 2409 meningioma cases and matched controls was conducted in 13 countries using a common protocol. Results A reduced odds ratio (OR) related to ever having been a regular mobile phone user was seen for glioma [OR 0.81; 95% confidence interval (CI) 0.70-0.94] and meningioma (OR 0.79; 95% CI 0.68-0.91), possibly reflecting participation bias or other methodological limitations. No elevated OR was observed >= 10 years after first phone use (glioma: OR 0.98; 95% CI 0.76-1.26; meningioma: OR 0.83; 95% CI 0.61-1.14). ORs were = 1640 h, the OR was 1.40 (95% CI 1.03-1.89) for glioma, and 1.15 (95% CI 0.81-1.62) for meningioma; but there are implausible values of reported use in this group. ORs for glioma tended to be greater in the temporal lobe than in other lobes of the brain, but the CIs around the lobe-specific estimates were wide. ORs for glioma tended to be greater in subjects who reported usual phone use on the same side of the head as their tumour than on the opposite side. Conclusions Overall, no increase in risk of glioma or meningioma was observed with use of mobile phones. There were suggestions of an increased risk of glioma at the highest exposure levels, but biases and error prevent a causal interpretation. The possible effects of long-term heavy use of mobile phones require further investigation.
Article
Methods An interview-based case-control study with 2708 glioma and 2409 meningioma cases and matched controls was conducted in 13 countries using a common protocol. Results A reduced odds ratio (OR) related to ever having been a regular mobile phone user was seen for glioma [OR 0.81; 95% confidence interval (CI) 0.70-0.94] and meningioma (OR 0.79; 95% CI 0.68-0.91), possibly reflecting participation bias or other methodological limitations. No elevated OR was observed >= 10 years after first phone use (glioma: OR 0.98; 95% CI 0.76-1.26; meningioma: OR 0.83; 95% CI 0.61-1.14). ORs were < 1.0 for all deciles of lifetime number of phone calls and nine deciles of cumulative call time. In the 10th decile of recalled cumulative call time, >= 1640 h, the OR was 1.40 (95% CI 1.03-1.89) for glioma, and 1.15 (95% CI 0.81-1.62) for meningioma; but there are implausible values of reported use in this group. ORs for glioma tended to be greater in the temporal lobe than in other lobes of the brain, but the CIs around the lobe-specific estimates were wide. ORs for glioma tended to be greater in subjects who reported usual phone use on the same side of the head as their tumour than on the opposite side. Conclusions Overall, no increase in risk of glioma or meningioma was observed with use of mobile phones. There were suggestions of an increased risk of glioma at the highest exposure levels, but biases and error prevent a causal interpretation. The possible effects of long-term heavy use of mobile phones require further investigation.
Article
Results of the 1987-1988 anthropometric survey of Army personnel are presented in this report in the form of summary statistics, percentile data and frequency distribution. These anthropometric data are presented for a subset of personnel (1774 men and 2208 women) sampled to match the proportions of age categories and racial/ethnic groups found in the active duty Army of June 1988. Dimensions given in this report include 132 standard measurements made in the course of the survey, 60 derived dimensions calculated largely by adding and subtracting standard measurement data, and 48 head and face dimensions reported in traditional linear terms but collected by means of an automated headboard designed to obtain three-dimensional data. Measurement descriptions. Descriptions of the procedures and techniques used in this survey are also provided. These include explanations of the complex sampling plan, computer editing procedures, and strategies for minimizing observer error. Tabular material in appendices are designed to help users understand various practical applications of the dimensional data, and to identify comparable data obtained in previous anthropometric surveys.