Dynamic Regulation of Vascular Myosin Light Chain (MYL9) with Injury and Aging

Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America.
PLoS ONE (Impact Factor: 3.23). 10/2011; 6(10):e25855. DOI: 10.1371/journal.pone.0025855
Source: PubMed


Aging-associated changes in the cardiovascular system increase the risk for disease development and lead to profound alterations in vascular reactivity and stiffness. Elucidating the molecular response of arteries to injury and age will help understand the exaggerated remodeling of aging vessels.
We studied the gene expression profile in a model of mechanical vascular injury in the iliac artery of aging (22 months old) and young rats (4 months old). We investigated aging-related variations in gene expression at 30 min, 3 d and 7 d post injury. We found that the Myosin Light Chain gene (MYL9) was the only gene differentially expressed in the aged versus young injured arteries at all time points studied, peaking at day 3 after injury (4.6 fold upregulation (p<0.05) in the smooth muscle cell layers. We confirmed this finding on an aging aortic microarray experiment available through NCBI's GEO database. We found that Myl9 was consistently upregulated with age in healthy rat aortas. To determine the arterial localization of Myl9 with age and injury, we performed immunohistochemistry for Myl9 in rat iliac arteries and found that in healthy and injured (30 days post injury) arteries, Myl9 expression increased with age in the endothelial layers.
The consistent upregulation of the myosin light chain protein (Myl9) with age and injury in arterial tissue draws attention to the increased vascular permeability and to the age-caused predisposition to arterial constriction after balloon angioplasty.

Download full-text


Available from: Keith A Webster
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telocytes (TCs) were identified as a distinct cellular type of the interstitial tissue and defined as cells with extremely long telopodes (Tps). Our previous data demonstrated patterns of mouse TC-specific gene profiles on chromosome 1. The present study focuses on the identification of characters and patterns of TC-specific or TC-dominated gene expression profiles in chromosome 2 and 3, the network of principle genes and potential functional association. We compared gene expression profiles of pulmonary TCs, mesenchymal stem cells, fibroblasts, alveolar type II cells, airway basal cells, proximal airway cells, CD8(+) T cells from bronchial lymph nodes (T-BL), and CD8(+) T cells from lungs (T-LL). We identified that 26 or 80 genes of TCs in chromosome 2 and 13 or 59 genes of TCs up- or down-regulated in chromosome 3, as compared with other cells respectively. Obvious overexpression of Myl9 in chromosome 2 of TCs different from other cells, indicates that biological functions of TCs are mainly associated with tissue/organ injury and ageing, while down-expression of Pltp implies that TCs may be associated with inhibition or reduction of inflammation in the lung. Dominant overexpression of Sh3glb1, Tm4sf1 or Csf1 in chromosome 3 of TCs is mainly associated with tumour promotion in lung cancer, while most down-expression of Pde5 may be involved in the development of pulmonary fibrosis and other acute and chronic interstitial lung disease.
    Full-text · Article · Oct 2010 · Journal of Cellular and Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thoracic aortic aneurysm is a pathological local dilatation of the aorta, potentially leading to aortic rupture or dissection. The disease is a common complication of patients with bicuspid aortic valve, a congenital disorder present in 1-2% of the population. Using 2 dimensional fluorescence difference gel electrophoresis proteomics followed by mRNA expression, and alternative splicing analysis of the identified proteins, differences in dilated and non-dilated aorta tissues between 44 patients with bicuspid and tricuspid valves was examined. The pattern of protein expression was successfully validated with LC-MS/MS. A multivariate analysis of protein expression data revealed diverging protein expression fingerprints in patients with tricuspid compared to the patients with bicuspid aortic valves. From 302 protein spots included in the analysis, 69 and 38 spots were differentially expressed between dilated and non-dilated aorta specifically in patients with tricuspid and bicuspid aortic valve, respectively. 92 protein spots were differentially expressed between dilated and non-dilated aorta in both phenotypes. Similarly, mRNA expression together with alternative splicing analysis of the identified proteins also showed diverging fingerprints in the two patient groups. Differential splicing was abundant but the expression levels of differentially spliced mRNA transcripts were low compared with the wild type transcript and there was no correlation between splicing and the number of spots. Therefore, the different spots are likely to represent post-translational modifications. The identification of differentially expressed proteins suggests that dilatation in patients with a tricuspid aortic valve involves inflammatory processes whereas aortic aneurysm in patients with BAV may be the consequence of impaired repair capacity. The results imply that aortic aneurysm formation in patients with bicuspid and tricuspid aortic valves involve different biological pathways leading to the same phenotype.
    No preview · Article · Nov 2012 · Molecular & Cellular Proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In cerebral arteries, alterations of vascular reactivity have been observed but not well molecularly characterized. Therefore, we have hypothesized that cerebrovascular reactivity could be modified by aging via a modification of Ca(2+) signaling in smooth muscle cells. Ca(2+) signals and gene expression implicated in contraction have been measured in posterior and middle cerebral arteries from young (2-3 months) and old (20-22 months) C57Bl6/J mice. Aging induced a decrease of KCl- and caffeine-induced contraction as well as a decrease of the amplitudes and an increase of the durations of KCl- and caffeine-induced Ca(2+) signals. These results could be linked with the decrease of gene expression coding for Cav1.2, RyR2, SERCA2, PLB, STIM1, TRIC-B, and the increase of FKBP12.6 and TPCN1 gene expression. Finally, aging induced a modification of InsP3 subtype expression pattern responsible for a modification of the InsP3 affinity to activate Ca(2+) signals. These results show that aging induces a decrease of contractility correlated with modifications of the expression of genes encoding Ca(2+) signaling toolkit. Globally, the amplitude of Ca(2+) signals was decreased, whereas their duration was increased by a defection of Ca(2+) store refilling.
    Full-text · Article · Dec 2012 · Pflügers Archiv - European Journal of Physiology
Show more