Generation and Comprehensive Analysis of an Influenza Virus Polymerase Cellular Interaction Network

RNA Metabolism, IBMM, ULB, rue Profs. Jeener & Brachet 12, 6041 Gosselies, Belgium.
Journal of Virology (Impact Factor: 4.44). 12/2011; 85(24):13010-8. DOI: 10.1128/JVI.02651-10
Source: PubMed


The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response.

Download full-text


Available from: Lionel Tafforeau
  • Source
    • "When RNPs reach the nuclear membrane, nuclear importation is mediated by the binding of the nucleoprotein with the alpha importins, which then bind importin-β [129]. Simultaneously, the importins must interact with PA, PB1 and PB2 [130], and this affects the interaction of the RNP with the same importins [131]. Specifically, subunits PB1 and PA are imported by Ran- BP5 or karyopherin beta3 (also known as importin beta3, or importin 5), whilst subunit PB2 is imported by importin alpha-3 or importin alpha-7. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Influenza is a contagious respiratory acute viral disease characterized by a short incubation period, high fever and respiratory and systemic symptoms. The burden of influenza is very heavy. Indeed, the World Health Organization (WHO) estimates that annual epidemics affect 5-15% of the world's population, causing up to 4-5 million severe cases and from 250,000 to 500,000 deaths. In order to design anti-influenza molecules and compounds, it is important to understand the complex replication cycle of the influenza virus. Replication is achieved through various stages. First, the virus must engage the sialic acid receptors present on the free surface of the cells of the respiratory tract. The virus can then enter the cells by different routes (clathrin-mediated endocytosis or CME, caveolae-dependent endocytosis or CDE, clathrin-caveolae-independent endocytosis, or macropinocyto-sis). CME is the most usual pathway; the virus is internalized into an endosomal compartment, from which it must emerge in order to release its nucleic acid into the cytosol. The ribonucleo-protein must then reach the nucleus in order to begin the process of translation of its genes and to transcribe and replicate its nucleic acid. Subsequently, the RNA segments, surrounded by the nucleoproteins, must migrate to the cell membrane in order to enable viral assembly. Finally, the virus must be freed to invade other cells of the respiratory tract. All this is achieved through a synchronized action of molecules that perform multiple enzymatic and catalytic reactions, currently known only in part, and for which many inhibitory or competitive molecules have been studied. Some of these studies have led to the development of drugs that have been approved, such as Amantadine, Rimantadine, Oseltamivir, Zanamivir, Peramivir, Laninamivir, Ribavirin and Arbidol. This review focuses on the influenza life-cycle and on the currently available drugs, while potential anti-viral compounds for the prevention and treatment of influenza are considered in the subsequent review.
    Full-text · Article · Sep 2014 · Journal of preventive medicine and hygiene
  • Source
    • "Another strategy to identify host factors interacting with viral proteins is to use the yeast two-hybrid system (Shapira et al., 2009; Tafforeau et al., 2011). In particular, Tafforeau et al. (2011) used this system to identify several partners of H5N1 polymerase subunits. However, the approach is limited by a general high rate of false positives and the caveat of protein interactions not taking place in a relevant cellular context. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of H5N1 influenza virus pathogenesis are multifaceted and can be seen as an emergent property that cannot be comprehended without looking at the system as a whole. In past years, most of the high-throughput studies on H5N1-host interactions have focused on the host transcriptomic response, at the cellular or the lung tissue level. These studies pointed out that the dynamics and magnitude of the innate immune response and immune cell infiltration is critical to H5N1 pathogenesis. However, viral-host interactions are multidimensional and advances in technologies are creating new possibilities to systematically measure additional levels of 'omic data (e.g. proteomic, metabolomic, and RNA profiling) at each temporal and spatial scale (from the single cell to the organism) of the host response. Natural host genetic variation represents another dimension of the host response that determines pathogenesis. Systems biology models of H5N1 disease aim at understanding and predicting pathogenesis through integration of these different dimensions by using intensive computational modeling. In this review, we describe the importance of 'omic studies for providing a more comprehensive view of infection and mathematical models that are being developed to integrate these data. This review provides a roadmap for what needs to be done in the future and what computational strategies should be used to build a global model of H5N1 pathogenesis. It is time for systems biology of H5N1 pathogenesis to take center stage as the field moves towards a more comprehensive view of virus-host interactions.
    Full-text · Article · Mar 2013 · Virus Research
  • Source
    • "In a separate recent screen, host genes specifically important for influenza viral polymerase (RdRP) function were identified, which are also potential candidates for antiviral drug development [136]. A chemical biology screen of 200,000 synthetic compounds recently identified naphthalimides as an antiviral chemical class that activated a new host defense factor, REDD1, which in turn inhibited influenza NS1 and viral replication [137]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Influenza has a long history of causing morbidity and mortality in the human population through routine seasonal spread and global pandemics. The high mutation rate of the RNA genome of the influenza virus, combined with assortment of its multiple genomic segments, promote antigenic diversity and new subtypes, allowing the virus to evade vaccines and become resistant to antiviral drugs. There is thus a continuing need for new anti-influenza therapy using novel targets and creative strategies. In this review, we summarize prospective future therapeutic regimens based on recent molecular and genomic discoveries.
    Full-text · Article · Sep 2012 · BMC Medicine
Show more