Expression and reactivation of HIV in a chemokine induced model of HIV latency in primary resting CD4+ T cells

Department of Medicine, Monash University, Melbourne, VIC, Australia.
Retrovirology (Impact Factor: 4.19). 10/2011; 8(1):80. DOI: 10.1186/1742-4690-8-80
Source: PubMed


We recently described that HIV latent infection can be established in vitro following incubation of resting CD4+ T-cells with chemokines that bind to CCR7. The main aim of this study was to fully define the post-integration blocks to virus replication in this model of CCL19-induced HIV latency.
High levels of integrated HIV DNA but low production of reverse transcriptase (RT) was found in CCL19-treated CD4+ T-cells infected with either wild type (WT) NL4.3 or single round envelope deleted NL4.3 pseudotyped virus (NL4.3- Δenv). Supernatants from CCL19-treated cells infected with either WT NL4.3 or NL4.3- Δenv did not induce luciferase expression in TZM-bl cells, and there was no expression of intracellular p24. Following infection of CCL19-treated CD4+ T-cells with NL4.3 with enhanced green fluorescent protein (EGFP) inserted into the nef open reading frame (NL4.3- Δnef-EGFP), there was no EGFP expression detected. These data are consistent with non-productive latent infection of CCL19-treated infected CD4+ T-cells. Treatment of cells with phytohemagluttinin (PHA)/IL-2 or CCL19, prior to infection with WT NL4.3, resulted in a mean fold change in unspliced (US) RNA at day 4 compared to day 0 of 21.2 and 1.1 respectively (p = 0.01; n = 5), and the mean expression of multiply spliced (MS) RNA was 56,000, and 5,000 copies/million cells respectively (p = 0.01; n = 5). In CCL19-treated infected CD4+ T-cells, MS-RNA was detected in the nucleus and not in the cytoplasm; in contrast to PHA/IL-2 activated infected cells where MS RNA was detected in both. Virus could be recovered from CCL19-treated infected CD4+ T-cells following mitogen stimulation (with PHA and phorbyl myristate acetate (PMA)) as well as TNFα, IL-7, prostratin and vorinostat.
In this model of CCL19-induced HIV latency, we demonstrate HIV integration without spontaneous production of infectious virus, detection of MS RNA in the nucleus only, and the induction of virus production with multiple activating stimuli. These data are consistent with ex vivo findings from latently infected CD4+ T-cells from patients on combination antiretroviral therapy, and therefore provide further support of this model as an excellent in vitro model of HIV latency.

Download full-text


Available from: Marina Alexander
  • Source
    • "Secretion of IL-7 by dendritic cells may be important for the survival of memory T cells, and secretion of IL-15 by macrophages and other mononuclear phagocytes is important for the low level of proliferation necessary to maintain a resting memory pool over time [17]. Thus while it is known that several myeloid-derived cell types secrete cytokines and chemokines that facilitate the development of latency and maintain the resting CD4+ T cell pool, whether or not these cells are necessary for the establishment of latency in vivo remains unknown [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The major targets of HIV infection in humans are CD4+ T cells. CD4+ T cell depletion is a hallmark of AIDS. Previously, the SCID-hu thy/liv model was used to study the effect of HIV on thymopoeisis in vivo. However, these mice did not develop high levels of peripheral T cell reconstitution and required invasive surgery for infection and analysis. Here, we describe a novel variant of this model in which thy/liv implantation results in systemic reconstitution with human T cells in the absence of any other human hematopoietic lineages. NOD/SCID-hu thy/liv and NSG-hu thy/liv mice were created by implanting human fetal thymus and liver tissues under the kidney capsule of either NOD/SCID or NSG mice. In contrast to NOD/SCID-hu thy/liv mice that show little or no human cells in peripheral blood or tissues, substantial systemic human reconstitution occurs in NSG-hu thy/liv. These mice are exclusively reconstituted with human T cells (i.e. T-cell only mice or TOM). Despite substantial levels of human T cells no signs of graft-versus-host disease (GVHD) were noted in these mice over a period of 14 months. TOMs are readily infected after parenteral exposure to HIV-1. HIV replication is sustained in peripheral blood at high levels and results in modest reduction of CD4+ T cells. HIV-1 replication in TOM responds to daily administration of combination antiretroviral therapy (ART) resulting in strong suppression of virus replication as determined by undetectable viral load in plasma. Latently HIV infected resting CD4+ T cells can be isolated from suppressed mice that can be induced to express HIV ex-vivo upon activation demonstrating the establishment of latency in vivo. NSG-hu thy/liv mice are systemically reconstituted with human T cells. No other lymphoid lineages are present in these mice (i.e. monocytes/macrophages, B cells and DC are all absent). These T cell only mice do not develop GVHD, are susceptible to HIV-1 infection and can efficiently maintain virus replication. HIV infected TOM undergoing ART harbor latently infected, resting CD4+ T cells.
    Full-text · Article · Oct 2013 · Retrovirology
  • Source
    • "If this cell is latently infected with HIV, reactivation may trigger the transition to productive infection [117]. In accordance with this, ex vivo and in vitro stimulation of resting CD4+ T cells resulted in relocalization of HIV msRNA to the cytoplasm [103,116]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In most HIV-infected individuals adherent to modern antiretroviral therapy (ART), plasma viremia stays undetectable by clinical assays and therefore, additional virological markers for monitoring and predicting therapy responses and for measuring the degree of HIV persistence in patients on ART should be identified. For the above purposes, quantitation of cell-associated HIV biomarkers could provide a useful alternative to measurements of viral RNA in plasma. This review concentrates on cell-associated (CA) HIV RNA with the emphasis on its use as a virological biomarker. We discuss the significance of CA HIV RNA as a prognostic marker of disease progression in untreated patients and as an indicator of residual virus replication and the size of the dynamic viral reservoir in ART-treated patients. Potential value of this biomarker for monitoring the response to ART and to novel HIV eradication therapies is highlighted.
    Full-text · Article · Apr 2013 · Retrovirology
  • Source
    • "However, the transcriptional state of these cells was not fully examined. Our data as well as recent work have shown that multiply spliced tat/rev mRNA are lower in HIV infected quiescent and resting CD4 T cells [43,48-51]. This coupled with data from HIV patients on HAART that show elevated levels of unspliced viral mRNA compared to spliced would suggest that defects in splicing can impact the release of virions from quiescent T cells [48,52-54]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The restriction of the Human Immunodeficiency Virus (HIV) infection in quiescent CD4+ T cells has been an area of active investigation. Early studies have suggested that this T cell subset is refractory to infection by the virus. Subsequently it was demonstrated that quiescent cells could be infected at low levels; nevertheless these observations supported the earlier assertions of debilitating defects in the viral life cycle. This phenomenon raised hopes that identification of the block in quiescent cells could lead to the development of new therapies against HIV. As limiting levels of raw cellular factors such as nucleotides did not account for the block to infection, a number of groups pursued the identification of cellular proteins whose presence or absence may impact the permissiveness of quiescent T cells to HIV infection. A series of studies in the past few years have identified a number of host factors implicated in the block to infection. In this review, we will present the progress made, other avenues of investigation and the potential impact these studies have in the development of more effective therapies against HIV.
    Full-text · Article · Apr 2013 · Retrovirology
Show more