Int22h-1/int22h-2-mediated Xq28 rearrangements: Intellectual disability associated with duplications and in utero male lethality with deletions

Division of Medical Genetics, Department of Child Health, University of Missouri Health Care, Columbia, Missouri, USA.
Journal of Medical Genetics (Impact Factor: 6.34). 12/2011; 48(12):840-50. DOI: 10.1136/jmedgenet-2011-100125
Source: PubMed


X linked intellectual disability (XLID) is common, with an estimated prevalence of 1/1000. The expanded use of array comparative genomic hybridisation (CGH) has led to the identification of several XLID-associated copy-number variants.
Array CGH analysis was performed using chromosomal microarray with ∼105 000 oligonucleotides covering the entire genome. Confirmatory fluorescence in situ hybridisation analyses were subsequently performed. Chromosome X-inactivation (XCI) was assessed using methylation-sensitive restriction enzyme digestion followed by PCR amplification.
A novel ∼0.5 Mb duplication in Xq28 was identified in four cognitively impaired males who share behavioural abnormalities (hyperactivity and aggressiveness) and characteristic facial features (high forehead, upper eyelid fullness, broad nasal bridge and thick lower lip). These duplications were inherited from mothers with skewed XCI and are mediated by nonallelic homologous recombination between the low-copy repeat regions int22h-1 and int22h-2, which, in addition to int22h-3, are also responsible for inversions disrupting the factor VIII gene in haemophilia A. In addition, we have identified a reciprocal deletion in a girl and her mother, both of whom exhibit normal cognition and completely skewed XCI. The mother also had two spontaneous abortions.
The phenotypic similarities among subjects with int22h-1/int22h-2-mediated Xq28 duplications suggest that such duplications are responsible for a novel XLID syndrome. The reciprocal deletion may not be associated with a clinical phenotype in carrier females due to skewed XCI, but may be lethal for males in utero. Advancements in array CGH technology have enabled the identification of such small, clinically relevant copy-number variants.

Download full-text


Available from: Ayman W El-Hattab, Jan 23, 2015
  • Source
    • "Since oligonucleotide probes cover a part of MECP2 sequence whereas the deletion was detectable by FISH with a probe for MECP2, we have speculated that genomic loss within Xq28 is a bit larger than shown by the array CGH. Likewise, sequence variations specifically generating Xq28 subchromosomal rearrangements are co-localized with the breakpoints outside of MECP2 loci [41,42]. So far, it appears to be also valid for reported deletions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rett syndrome (RTT) is an X-linked neurodevelopmental disease affecting predominantly females caused by MECP2 mutations. Although RTT is classically considered a monogenic disease, a stable proportion of patients, who do not exhibit MECP2 sequence variations, does exist. Here, we have attempted at uncovering genetic causes underlying the disorder in mutation-negative cases by whole genome analysis using array comparative genomic hybridization (CGH) and a bioinformatic approach. Using BAC and oligonucleotide array CGH, 39 patients from RTT Russian cohort (in total, 354 RTT patients), who did not bear intragenic MECP2 mutations, were studied. Among the individuals studied, 12 patients were those with classic RTT and 27 were those with atypical RTT. We have detected five 99.4 kb deletions in chromosome Xq28 affecting MECP2 associated with mild manifestations of classic RTT and five deletions encompassing MECP2 spanning 502.428 kb (three cases), 539.545 kb (one case) and 877.444 kb (one case) associated with mild atypical RTT. A case has demonstrated somatic mosaicism. Regardless of RTT type and deletion size, all the cases exhibited mild phenotypes. Our data indicate for the first time that no fewer than 25% of RTT cases without detectable MECP2 mutations are caused by Xq28 microdeletions. Furthermore, Xq28 (MECP2) deletions are likely to cause mild subtypes of the disease, which can manifest as both classical and atypical RTT.
    Full-text · Article · Nov 2013 · Molecular Cytogenetics
  • Source
    • "Case #20 is a 10q subtelomeric deletion; similar cases were previously described, but the clinical manifestations are usually variable and a specific phenotype is not associated [2]. Case #23 exhibits a number of clinical features of the Xq28 duplication syndrome [26]; the phenotypic discrepancies have been attributed to CNVs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Array comparative genomic hybridization (CGH) has been repeatedly shown to be a successful tool for the identification of genomic variations in a clinical population. During the last decade, the implementation of array CGH has resulted in the identification of new causative submicroscopic chromosome imbalances and copy number variations (CNVs) in neuropsychiatric (neurobehavioral) diseases. Currently, array-CGH-based technologies have become an integral part of molecular diagnosis and research in individuals with neuropsychiatric disorders and children with intellectual disability (mental retardation) and congenital anomalies. Here, we introduce the Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies analyzed by BAC array CGH and a novel bioinformatic strategy. Results Among 54 individuals highly selected according to clinical criteria and molecular and cytogenetic data (from 2426 patients evaluated cytogenetically and molecularly between November 2007 and May 2012), chromosomal imbalances were detected in 26 individuals (48%). In two patients (4%), a previously undescribed condition was observed. The latter has been designated as meiotic (constitutional) genomic instability resulted in multiple submicroscopic rearrangements (including CNVs). Using bioinformatic strategy, we were able to identify clinically relevant CNVs in 15 individuals (28%). Selected cases were confirmed by molecular cytogenetic and molecular genetic methods. Eight out of 26 chromosomal imbalances (31%) have not been previously reported. Among them, three cases were co-occurrence of subtle chromosome 9 and 21 deletions. Conclusions We conducted an array CGH study of Russian patients suffering from intellectual disability, autism, epilepsy and congenital anomalies. In total, phenotypic manifestations of clinically relevant genomic variations were found to result from genomic rearrangements affecting 1247 disease-causing and pathway-involved genes. Obviously, a significantly lesser part of them are true candidates for intellectual disability, autism or epilepsy. The success of our preliminary array CGH and bioinformatic study allows us to expand the cohort. According to the available literature, this is the first comprehensive array CGH evaluation of a Russian cohort of children with neuropsychiatric disorders and congenital anomalies.
    Full-text · Article · Dec 2012 · Molecular Cytogenetics
  • Source

    Full-text · Article · Mar 2012 · British Journal of Haematology
Show more