A New Link in the Chain from Amino Acids to mTORC1 Activation

Centre for Biological Sciences, Life Sciences Building (B85), University of Southampton, Southampton SO17 1BJ, UK.
Molecular cell (Impact Factor: 14.02). 10/2011; 44(1):7-8. DOI: 10.1016/j.molcel.2011.09.004
Source: PubMed


A recent study reveals that the scaffold protein p62 plays a role in linking nutritional cues (amino acids) to the activation of mammalian target of rapamycin complex 1 (mTORC1), a protein kinase that controls cell size and proliferation.

Full-text preview

Available from:
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological evidence points to increased dairy and meat consumption, staples of the Western diet, as major risk factors for the development of type 2 diabetes (T2D). This paper presents a new concept and comprehensive review of leucine-mediated cell signaling explaining the pathogenesis of T2D and obesity by leucine-induced over-stimulation of mammalian target of rapamycin complex 1 (mTORC1). mTORC1, a pivotal nutrient-sensitive kinase, promotes growth and cell proliferation in response to glucose, energy, growth factors and amino acids. Dairy proteins and meat stimulate insulin/insulin-like growth factor 1 signaling and provide high amounts of leucine, a primary and independent stimulator for mTORC1 activation. The downstream target of mTORC1, the kinase S6K1, induces insulin resistance by phosphorylation of insulin receptor substrate-1, thereby increasing the metabolic burden of β-cells. Moreover, leucine-mediated mTORC1-S6K1-signaling plays an important role in adipogenesis, thus increasing the risk of obesity-mediated insulin resistance. High consumption of leucine-rich proteins explains exaggerated mTORC1-dependent insulin secretion, increased β-cell growth and β-cell proliferation promoting an early onset of replicative β-cell senescence with subsequent β-cell apoptosis. Disturbances of β-cell mass regulation with increased β-cell proliferation and apoptosis as well as insulin resistance are hallmarks of T2D, which are all associated with hyperactivation of mTORC1. In contrast, the anti-diabetic drug metformin antagonizes leucine-mediated mTORC1 signaling. Plant-derived polyphenols and flavonoids are identified as natural inhibitors of mTORC1 and exert anti-diabetic and anti-obesity effects. Furthermore, bariatric surgery in obesity reduces increased plasma levels of leucine and other branched-chain amino acids. Attenuation of leucine-mediated mTORC1 signaling by defining appropriate upper limits of the daily intake of leucine-rich animal and dairy proteins may offer a great chance for the prevention of T2D and obesity, as well as other epidemic diseases of civilization with increased mTORC1 signaling, especially cancer and neurodegenerative diseases, which are frequently associated with T2D.
    Full-text · Article · Mar 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased protein supply by feeding cow-milk-based infant formula in comparison to lower protein content of human milk is a well-recognized major risk factor of childhood obesity. However, there is yet no conclusive biochemical concept explaining the mechanisms of formula-induced childhood obesity. It is the intention of this article to provide the biochemical link between leucine-mediated signalling of mammalian milk proteins and adipogenesis as well as early adipogenic programming. Leucine has been identified as the predominant signal transducer of mammalian milk, which stimulates the nutrient-sensitive kinase mammalian target of rapamycin complex 1 (mTORC1). Leucine thus functions as a maternal-neonatal relay for mTORC1-dependent neonatal β-cell proliferation and insulin secretion. The mTORC1 target S6K1 plays a pivotal role in stimulation of mesenchymal stem cells to differentiate into adipocytes and to induce insulin resistance. It is of most critical concern that infant formulas provide higher amounts of leucine in comparison to human milk. Exaggerated leucine-mediated mTORC1-S6K1 signalling induced by infant formulas may thus explain increased adipogenesis and generation of lifelong elevated adipocyte numbers. Attenuation of mTORC1 signalling of infant formula by leucine restriction to physiologic lower levels of human milk offers a great chance for the prevention of childhood obesity and obesity-related metabolic diseases.
    Full-text · Article · Mar 2012 · Journal of obesity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that an altered mammalian (mechanistic) target of rapamycin (mTOR) signaling pathway and its pharmacological modulation might be implicated in several neurological diseases including epileptogenesis. mTOR is a molecular sensor, which regulates protein synthesis, enhancing mRNA translation of genes involved in the regulation of cell proliferation and survival, working as part of two distinct multimeric complexes known as mTORC1 and mTORC2. mTOR is an evolutionarily highly conserved serine/threonine kinase belonging to the phosphoinositide 3-kinase-related kinase family and represents one of the most recently studied pathways in relation to epilepsy and epileptogenesis, due to its suggested pivotal role in many aspects of cellular proliferation and growth also including neurodegeneration, neurogenesis, and synaptic plasticity. In this review, we report the cellular and molecular features of mTOR and related pathways, analyze their function in the brain including all current related evidence of their role, and finally, discuss the possible involvement of mTOR signaling in epileptogenesis and epilepsy, giving further consideration to future developments in this area.
    Full-text · Article · Jul 2012 · Molecular Neurobiology
Show more