Blood pressure modulation following activation of mast cells by cationic cell penetrating peptides

Laboratory of Biotechnology and Radiobiology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
Peptides (Impact Factor: 2.62). 12/2011; 32(12):2444-51. DOI: 10.1016/j.peptides.2011.09.017
Source: PubMed


Short cell penetrating peptides (CPP) are widely used in vitro to transduce agents into cells. But their systemic effect has not been yet studied in detail. We studied the systemic effect of the cell penetrating peptides, penetratin, transportan and pro-rich, on rat hemodynamic functions. Intra-arterial monitoring of blood pressure showed that injection of the positively charged penetratin and transportan in a wide range of concentrations (2.5-320 μg/kg) caused highly significant transient decrease in the systolic and diastolic blood pressure in a dose dependent manner (p<0.01). Pretreatment with histamine receptors blockers or with cromolyn, a mast cell stabilizing agent, significantly attenuated this effect. Furthermore, in vitro incubation of these both peptides with mast cells line, LAD2, caused a massive mast cell degranulation. In vitro studies showed that these CPP in a wide range of concentrations were not cytotoxic without any effect on the survival of LAD2 mast cell line. In contrast, the less positively charged and proline-rich CPP, pro-rich, had no systemic effects with no effect on mast cell degranulation. Our results indicate that intravenously administrated positively charged CPP may have deleterious consequences due to their induced BP drop, mediated by mast cell activation. Therefore, the major effect of mast cell activation on BP should be considered in developing possible future drug therapies based on the injection of membrane-permeable and positively charged CPP. Nevertheless, lower levels of such CPP may be considered as a treatment of systemic high BP through moderate systemic mast cell activation.

Download full-text


Available from: Raphael Gorodetsky, Jul 21, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Duchenne muscular dystrophy is a severe, X-linked muscle wasting disorder caused by the absence of an integral structural protein called dystrophin. This is caused by mutations or deletions in the dystrophin gene which disrupt the reading frame, thereby halting the production of a functional protein. A number of potential therapies have been investigated for the treatment of this disease including utrophin upregulation, 'stop-codon read through' aminoglycosides and adeno-associated virus gene replacement as well as stem cell therapy. However, the most promising treatment to date is the use of antisense oligonucleotides which cause exon skipping by binding to a specific mRNA sequence, skipping the desired exon, thereby restoring the reading frame and producing a truncated yet functional protein. The results from recent 2'OMePS and morpholino clinical trials have renewed hope for Duchenne patients; however in vivo studies in a mouse model, mdx, have revealed low systemic distribution and poor delivery of oligonucleotides to affected tissues such as the brain and heart. However a variety of cell penetrating peptides directly conjugated to antisense oligonucleotides have been shown to enhance delivery in Duchenne model systems with improved systemic distribution and greater efficacy compared to 'naked' antisense oligonucleotides. These cell penetrating peptides, combined with an optimised dose and dosing regimen, as well as thorough toxicity profile have the potential to be developed into a promising treatment which may be progressed to clinical trial.
    No preview · Article · Nov 2012 · Current pharmaceutical design