Article

Effect of Cytochrome P450 3A5 Genotype on Atorvastatin Pharmacokinetics and Its Interaction with Clarithromycin

College of Pharmacy and Center for Pharmacogenomics, University of Florida, Health Science Center, Gainesville, FL 32610-0486, USA.
Pharmacotherapy (Impact Factor: 2.66). 10/2011; 31(10):942-50. DOI: 10.1592/phco.31.10.942
Source: PubMed

ABSTRACT

Abstract Study Objective. To assess the effects of the cytochrome P450 (CYP) 3A genotype, CYP3A5, on atorvastatin pharmacokinetics and its interaction with clarithromycin. Design. Prospective, two-phase, randomized-sequence, open-label pharmacokinetic study. Setting. Clinical research center at a teaching hospital. Subjects. Twenty-three healthy volunteers who were screened for genotype: 10 subjects carried the CYP3A5*1 allele (expressors) and 13 subjects did not (nonexpressors). Intervention. In one phase, subjects received a single oral dose of atorvastatin 20 mg. In the other phase, subjects received clarithromycin 500 mg twice/day for 5 days; on day 4 after the morning dose, subjects also received a single oral dose of atorvastatin 20 mg. All subjects participated in both phases of the study, which were separated by at least 14 days. Measurements and Main Results. Pharmacokinetic parameters of both forms of atorvastatin-atorvastatin acid and atorvastatin lactone-were compared between CYP3A5 expressors and nonexpressors, both in the absence and presence of clarithromycin, a strong CYP3A inhibitor. The acid form is pharmacologically active, and the lactone form has been associated with the atorvastatin's muscle-related adverse effects. Atorvastatin acid exposure did not differ significantly between CYP3A5 genotype groups. When subjects had not received clarithromycin pretreatment, the area under the concentration-time curve from time zero extrapolated to infinity (AUC(0-∞)) of atorvastatin lactone was 36% higher in nonexpressors than in expressors (median 47.6 ng•hr/ml [interquartile range (IQR) 37.8-64.3 ng•hr/ml] vs 34.9 ng•hr/ml [IQR 21.6-42.2 ng•hr/ml], p=0.038). After clarithromycin pretreatment, changes in the pharmacokinetic parameters of atorvastatin acid and lactone were not significantly different between the nonexpressors versus the expressors; however, the increase in the AUC(0-∞) of atorvastatin lactone was 37% greater in expressors than in nonexpressors (geometric mean ± SD 3.59 ± 0.57 vs 2.62 ± 0.35, p=0.049). Conclusion. Our data suggest that the CYP3A5 genotype has minimal effects on the pharmacokinetic parameters of atorvastatin and its interaction with clarithromycin; these effects are unlikely to be clinically significant.

0 Followers
 · 
83 Reads
  • Source
    • "These other studies did not perform a case-only analysis like Wilke et al. [13], but the preponderance of negative case-control findings makes it seem unlikely that CYP3A5*3 is clinically meaningful for atorvastatin. These negative results for atorvastatin and SIM clinical outcome are supported by the pharmacokinetic data from Shin et al. [39]. They found a statistically significant association between CYP3A5*3 and atorvastatin exposure, but the difference between genotypes was small (36%). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Statins are the most commonly prescribed drugs in the United States and are extremely effective in reducing major cardiovascular events in the millions of Americans with hyperlipidemia. However, many patients (up to 25%) cannot tolerate or discontinue statin therapy due to statin-induced myopathy (SIM). Patients will continue to experience SIM at unacceptably high rates or experience unnecessary cardiovascular events (as a result of discontinuing or decreasing their statin therapy) until strategies for predicting or mitigating SIM are identified. A promising strategy for predicting or mitigating SIM is pharmacogenetic testing, particularly of pharmacokinetic genetic variants as SIM is related to statin exposure. Data is emerging on the association between pharmacokinetic genetic variants and SIM. A current, critical evaluation of the literature on pharmacokinetic genetic variants and SIM for potential translation to clinical practice is lacking. This review focuses specifically on pharmacokinetic genetic variants and their association with SIM clinical outcomes. We also discuss future directions, specific to the research on pharmacokinetic genetic variants, which could speed the translation into clinical practice. For simvastatin, we did not find sufficient evidence to support the clinical translation of pharmacokinetic genetic variants other than SLCO1B1. However, SLCO1B1 may also be clinically relevant for pravastatin- and pitavastatin-induced myopathy, but additional studies assessing SIM clinical outcome are needed. CYP2D6*4 may be clinically relevant for atorvastatin-induced myopathy, but mechanistic studies are needed. Future research efforts need to incorporate statin-specific analyses, multi-variant analyses, and a standard definition of SIM. As the use of statins is extremely common and SIM continues to occur in a significant number of patients, future research investments in pharmacokinetic genetic variants have the potential to make a profound impact on public health.
    Full-text · Article · Apr 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with diabetes mellitus might be at a higher risk of HMG-CoA reductase inhibitor (statin)-induced myotoxicity, possibly because of reduced clearance of the statin lactone. The present study was designed to investigate the effect of diabetes on the biotransformation of atorvastatin acid, both in vivo in nondiabetic and diabetic renal transplant recipients, and in vitro in human liver samples from nondiabetic and diabetic donors. A total of 312 plasma concentrations of atorvastatin acid and atorvastatin lactone, from 20 nondiabetic and 32 diabetic renal transplant recipients, were included in the analysis. Nonlinear mixed-effects modelling was employed to determine the population pharmacokinetic estimates for atorvastatin acid and atorvastatin lactone. In addition, the biotransformation of these compounds was studied using human liver microsomal fractions obtained from 12 nondiabetic and 12 diabetic donors. In diabetic patients, the plasma concentration of atorvastatin lactone was significantly higher than that of atorvastatin acid throughout the 24-hour sampling period. The optimal population pharmacokinetic model for atorvastatin acid and atorvastatin lactone consisted of a two- and one-compartment model, respectively, with interconversion between atorvastatin acid and atorvastatin lactone. Parent drug was absorbed orally with a population estimate first-order absorption rate constant of 0.457 h(-1). The population estimates of apparent oral clearance (CL/F) of atorvastatin acid to atorvastatin lactone, intercompartmental clearance (Q/F), apparent central compartment volume of distribution after oral administration (V(1)/F) and apparent peripheral compartment volume of distribution after oral administration (V(2)/F) for atorvastatin acid were 231 L/h, 315 L/h, 325 L and 4910 L, respectively. The population estimates of apparent total clearance of atorvastatin lactone (CL(M)/F), apparent intercompartmental clearance of atorvastatin lactone (Q(M)/F) and apparent volume of distribution of atorvastatin lactone after oral administration (V(M)/F) were 85.4 L/h, 166 L/h and 249 L, respectively. The final covariate model indicated that the liver enzyme lactate dehydrogenase was related to CL/F and alanine aminotransferase (ALT) was related to Q/F. Importantly, diabetic patients have 3.56 times lower CL(M)/F than nondiabetic patients, indicating significantly lower clearance of atorvastatin lactone in these patients. Moreover, in a multivariate population pharmacokinetics model, diabetes status was the only significant covariate predicting the values of the CL(M)/F. Correspondingly, the concentration of atorvastatin acid remaining in the microsomal incubation was not significantly different between nondiabetic and diabetic liver samples, whereas the concentration of atorvastatin lactone was significantly higher in the samples from diabetic donors. In vitro studies, using recombinant enzymes, revealed that cytochrome P450 (CYP) 3A4 is the major CYP enzyme responsible for the biotransformation of atorvastatin lactone. These studies provide compelling evidence that the clearance of atorvastatin lactone is significantly reduced by diabetes, which leads to an increased concentration of this metabolite. This finding can be clinically valuable for diabetic transplant recipients who have additional co-morbidities and are on multiple medications.
    No preview · Article · Jul 2012 · Clinical Pharmacokinetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and Objective Patients with diabetes mellitus might be at a higher risk of HMG-CoA reductase inhibitor (statin)-induced myotoxicity, possibly because of reduced clearance of the statin lactone. The present study was designed to investigate the effect of diabetes on the biotransformation of atorvastatin acid, both in vivo in nondiabetic and diabetic renal transplant recipients, and in vitro in human liver samples from nondiabetic and diabetic donors. Subjects and Methods A total of 312 plasma concentrations of atorvastatin acid and atorvastatin lactone, from 20 nondiabetic and 32 diabetic renal transplant recipients, were included in the analysis. Nonlinear mixed-effects modelling was employed to determine the population pharmacokinetic estimates for atorvastatin acid and atorvastatin lactone. In addition, the biotransformation of these compounds was studied using human liver microsomal fractions obtained from 12 nondiabetic and 12 diabetic donors. Results In diabetic patients, the plasma concentration of atorvastatin lactone was significantly higher than that of atorvastatin acid throughout the 24-hour sampling period. The optimal population pharmacokinetic model for atorvastatin acid and atorvastatin lactone consisted of a two- and one-compartment model, respectively, with interconversion between atorvastatin acid and atorvastatin lactone. Parent drug was absorbed orally with a population estimate first-order absorption rate constant of 0.457 h−1. The population estimates of apparent oral clearance (CL/F) of atorvastatin acid to atorvastatin lactone, intercompartmental clearance (Q/F), apparent central compartment volume of distribution after oral administration (V1/F) and apparent peripheral compartment volume of distribution after oral administration (V2/F) for atorvastatin acid were 231 L/h, 315 L/h, 325 L and 4910 L, respectively. The population estimates of apparent total clearance of atorvastatin lactone (CLM/F), apparent intercompartmental clearance of atorvastatin lactone (QM/F) and apparent volume of distribution of atorvastatin lactone after oral administration (VM/F) were 85.4 L/h, 166 L/h and 249 L, respectively. The final covariate model indicated that the liver enzyme lactate dehydrogenase was related to CL/F and alanine aminotransferase (ALT) was related to Q/F. Importantly, diabetic patients have 3.56 times lower CLM/F than nondiabetic patients, indicating significantly lower clearance of atorvastatin lactone in these patients. Moreover, in a multivariate population pharmacokinetics model, diabetes status was the only significant covariate predicting the values of the CLM/F. Correspondingly, the concentration of atorvastatin acid remaining in the microsomal incubation was not significantly different between nondiabetic and diabetic liver samples, whereas the concentration of atorvastatin lactone was significantly higher in the samples from diabetic donors. In vitro studies, using recombinant enzymes, revealed that cytochrome P450 (CYP) 3A4 is the major CYP enzyme responsible for the biotransformation of atorvastatin lactone. Conclusions These studies provide compelling evidence that the clearance of atorvastatin lactone is significantly reduced by diabetes, which leads to an increased concentration of this metabolite. This finding can be clinically valuable for diabetic transplant recipients who have additional co-morbidities and are on multiple medications.
    No preview · Article · Sep 2012 · Clinical Pharmacokinetics
Show more