Investigation of Isomeric Transformations of Chlorogenic Acid in Buffers and Biological Matrixes by Ultraperformance Liquid Chromatography Coupled with Hybrid Quadrupole/Ion Mobility/Orthogonal Acceleration Time-of-Flight Mass Spectrometry

ArticleinJournal of Agricultural and Food Chemistry 59(20):11078-87 · September 2011with69 Reads
Impact Factor: 2.91 · DOI: 10.1021/jf203104k · Source: PubMed

    Abstract

    Ultraperformance liquid chromatography coupled with hybrid quadrupole/ion mobility/orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (UPLC-IM-MS) was used to study the isomeric transformations of trans-5-caffeoylquinic acid, an extremely active compound present in multiple vegetables, fruits, and beverages. The UPLC/oa-TOF MS results proved that in phosphate buffer (pH 7.4), plasma, or urine sample, trans-5-caffeoylquinic acid first isomerizes to trans-4-caffeoylquinic acid and then to trans-3-caffeoylquinic acid by intramolecular acyl migration. When exposed to UV light, trans-3-, -4-, and -5-caffeoylquinic acids undergo cis/trans isomerization to form cis isomers. The isomerization was solely dependent on the pH of the matrix, as well as the incubation temperature, and was independent of metabolic enzymes. UPLC-IM-MS results revealed that a reversible cis/trans isomerization of caffeoylquinic acids could also be induced by the electric field in an electrospray source. Thus, understanding the possible role of electric field-induced isomerization of caffeoylquinic acids may help lessen the confusion between gas phase phenomena and liquid state chemistry when applying IM-MS analysis. The comprehensive understanding of caffeoylquinic acid isomerization transformations is crucial for the appropriate handling of samples and interpretation of experimental data.