Age-related changes in durability and function of vaccine-elicited influenza-specific CD4(+) T-cell responses

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Vaccine (Impact Factor: 3.62). 09/2011; 29(47):8606-14. DOI: 10.1016/j.vaccine.2011.09.019
Source: PubMed


The major antigenic component of licensed influenza vaccines, hemagglutinin (HA), elicits predominantly type-specific antibody responses, thus necessitating frequent antigenic updates to the annual vaccine. However, accumulating evidence suggests that influenza vaccines can also induce significant cross-reactive T-cell responses to highly divergent, heterosubtypic HA antigens not included in the vaccine. Influenza vaccines are less effective among the elderly and studies that characterize cross-reactive T-cell immunity in this vulnerable population are much needed. Here, we systematically compare the ex vivo frequency, cytokine profile and phenotype of vaccine-elicited HA-specific T-cell responses among a cohort of young (18-49 years old) and elderly (≥70 years old) vaccinees, as well as the maturation and activation phenotype of total CD4(+) and CD8(+) T-cells. IFN-γ production after in vitro expansion and HA-specific Ab titers were also determined. We find that vaccine-elicited ex vivo frequencies of CD4(+) T-cells elicited by vaccination reactive to any given homo- or heterosubtypic Ag were comparable across the two age groups. While, no differences were observed between age groups in the phenotype of Ag-specific or total CD4(+) T-cells, PBMC from young adults were superior at producing IFN-γ after short-term Ag-specific culture. Significantly, while vaccine-elicited T-cell responses were durable among the younger vaccinees, they were short-lived among the elderly. These results have important ramifications for our understanding of vaccine-induced changes in the magnitude and functionality of HA-specific CD4(+) T-cells, as well as age-related alterations in response kinetics.

Download full-text


Available from: Yolanda D Mahnke, Dec 01, 2014
  • Source
    • "The observation that the response of CD4 T cells in aged mice is not absolutely defective but is delayed is consistent with findings in elderly humans, in which relatively normal CD4 T cell responses to influenza are observed. However, it has also been found that the responding CD4 T cells were poorly maintained in humans and the development of a memory response was impaired [30,31]. In our studies, CD4 memory T cells established after influenza infection of aged mice maintained function at least for one month (data not shown). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Ageing has been shown to reduce CD8 T cell repertoire diversity and immune responses against influenza virus infection in mice. In contrast, less is known about the impact of ageing on CD4 T cell repertoire diversity and immune response to influenza virus infection. Results The CD4 T cell response was followed after infection of young and aged C57BL/6 mice with influenza virus using a tetramer specific for an immunodominant MHC class II epitope of the influenza virus nucleoprotein. The appearance of virus-specific CD4 T cells in the lung airways of aged mice was delayed compared to young mice, but the overall peak number and cytokine secretion profile of responding CD4 T cells was not greatly perturbed. In addition, the T cell repertoire of responding cells, determined using T cell receptor Vβ analysis, failed to show the profound effect of age we previously described for CD8 T cells. The reduced impact of age on influenza-specific CD4 T cells was consistent with a reduced effect of age on the overall CD4 compared with the CD8 T cell repertoire in specific pathogen free mice. Aged mice that were thymectomized as young adults showed an enhanced loss of the epitope-specific CD4 T cell response after influenza virus infection compared with age-matched sham-thymectomized mice, suggesting that a reduced repertoire can contribute to impaired responsiveness. Conclusions The diversity of the CD4 T cell repertoire and response to influenza virus is not as profoundly impaired by ageing in C57BL/6 mice as previously shown for CD8 T cells. However, adult thymectomy enhanced the impact of ageing on the response. Understanding the impact of ageing on CD4 T cell responses to influenza virus infection is an important prerequisite for developing better vaccines for the elderly.
    Full-text · Article · May 2014 · Immunity & Ageing
  • Source
    • "There is controversy in the published data regarding the specifics of IFN-γ production. For example, it has been reported that only CD4+ and not CD8+ T cells produce IFN-γ in response to specific peptides after vaccination and that this cellular response is low but steady [30]. In contrast, another study reported that subjects without confirmed exposure to the pandemic A/H1N1 virus could generate higher numbers of IFN-γ spots from both CD4+ and CD8+ T cells to either pandemic A/H1N1 infection with the whole vaccine virus or toward a peptide pool [31,32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The efficacy of the H1N1 influenza vaccine relies on the induction of both humoral and cellular responses. This study evaluated the humoral and cellular responses to a monovalent non-adjuvanted pandemic influenza A/H1N1 vaccine in occupationally exposed subjects who were previously vaccinated with a seasonal vaccine. Sixty healthy workers from a respiratory disease hospital were recruited. Sera and peripheral blood mononuclear cells (PBMCs) were obtained prior to and 1 month after vaccination with a non-adjuvanted monovalent 2009 H1N1 vaccine (Influenza A (H1N1) 2009 Monovalent Vaccine Panenza, Sanofi Pasteur). Antibody titers against the pandemic A/H1N1 influenza virus were measured via hemagglutination inhibition (HI) and microneutralization assays. Antibodies against the seasonal HA1 were assessed by ELISA. The frequency of IFN-γ-producing cells as well as CD4+ and CD8+ T cell proliferation specific to the pandemic virus A/H1N peptides, seasonal H1N1 peptides and seasonal H3N2 peptides were assessed using ELISPOT and flow cytometry. At baseline, 6.7% of the subjects had seroprotective antibody titers. The seroconversion rate was 48.3%, and the seroprotection rate was 66.7%. The geometric mean titers (GMTs) were significantly increased (from 6.8 to 64.9, p < 0.05). Forty-nine percent of the subjects had basal levels of specific IFN-γ-producing T cells to the pandemic A/H1N1 peptides that were unchanged post-vaccination. CD4+ T cell proliferation in response to specific pandemic A/H1N1 virus peptides was also unchanged; in contrast, the antigen-specific proliferation of CD8+ T cells significantly increased post-vaccination. Our results indicate that a cellular immune response that is cross-reactive to pandemic influenza antigens may be present in populations exposed to the circulating seasonal influenza virus prior to pandemic or seasonal vaccination. Additionally, we found that the pandemic vaccine induced a significant increase in CD8+ T cell proliferation.
    Full-text · Article · Nov 2013 · BMC Infectious Diseases
  • Source
    • "CD4 T cells become less functional in aged subjects [8,13]. These data are consistent with the observations that aged individuals have decreased trivalent inactivated influenza vaccine (TIV) responsiveness for both antibody and CD4 T cells [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Current yearly influenza virus vaccines induce strain-specific neutralizing antibody (NAb) responses providing protective immunity to closely matched viruses. However, these vaccines are often poorly effective in high-risk groups such as the elderly and challenges exist in predicting yearly or emerging pandemic influenza virus strains to include in the vaccines. Thus, there has been considerable emphasis on understanding broadly protective immunological mechanisms for influenza virus. Recent studies have implicated memory CD4 T cells in heterotypic immunity in animal models and in human challenge studies. Here we examined how influenza virus vaccination boosted CD4 T cell responses in younger versus aged humans. Our results demonstrate that while the magnitude of the vaccine-induced CD4 T cell response and number of subjects responding on day 7 did not differ between younger and aged subjects, fewer aged subjects had peak responses on day 14. While CD4 T cell responses were inefficiently boosted against NA, both HA and especially nucleocaspid protein- and matrix-(NP+M) specific responses were robustly boosted. Pre-existing CD4 T cell responses were associated with more robust responses to influenza virus NP+M, but not H1 or H3. Finally pre-existing strain-specific NAb decreased the boosting of CD4 T cell responses. Thus, accumulation of pre-existing influenza virus-specific immunity in the form of NAb and cross-reactive T cells to conserved virus proteins (e.g. NP and M) over a lifetime of exposure to infection and vaccination may influence vaccine-induced CD4 T cell responses in the aged.
    Full-text · Article · Oct 2013 · PLoS ONE
Show more