Comparison of different sample treatments for the analysis of ochratoxin A in wine by capillary HPLC with laser-induced fluorescence detection

Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.44). 09/2011; 401(9):2987-94. DOI: 10.1007/s00216-011-5387-3
Source: PubMed


Ochratoxin A (OTA) is a mycotoxin naturally found in various foods, including wine. As OTA is considered as a possible human carcinogen, the maximum concentration for this compound has been established at 2 μg kg(-1) in wine by the EU (Directive (CE) No 1881/2006). Typically, immunoaffinity columns have been used for its extraction. However, simpler, more efficient and less contaminant extraction systems are demanding. In this work, dispersive liquid-liquid microextraction using ionic liquid as extractant solvent (IL-DLLME) and the QuEChERS procedure, have been evaluated and compared for extraction of OTA in wine samples. Laser-induced fluorescence (LIF, He-Cd Laser excitation at 325 nm) coupled with capillary HPLC has been used for the determination of OTA, using a sodium dodecyl sulfate micellar solution in the mobile phase to increase the fluorescence intensity. Matrix-matched calibration curves were established for both methods, obtaining LODs (3× S/N) of 5.2 ng·L(-1) and 85.7 ng·L(-1) for IL-DLLME and QuEChERS, respectively. Clean extracts were obtained for white, rose and red wines with both methods, with recoveries between 88.7-94.2% for IL-DLLME and between 82.6-86.2% for QuEChERS. The precision was evaluated in terms of repeatability (n = 9) and intermediate precision (n = 15), being ≤ 8.5% for IL-DLLME and ≤ 5.4% for QuEChERS.

Download full-text


Available from: Natalia Arroyo-Manzanares, Jun 04, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ionic liquids (ILs) have drawn considerable interest for their use in various analytical techniques including chromatography, extractions, and mass spectrometry. This is largely due to the flexibility in tuning the physicochemical properties of ILs. There has been a significant increase in the number of publications over the last decade in which ILs have been employed as a chromatographic stationary phase, extraction solvent, or sorbent material in various preconcentration techniques. This review article highlights the recent advancements in the use of ILs in separation science including gas chromatography, high-performance liquid chromatography, capillary electrophoresis, extraction and microextraction techniques as well as mass spectrometry.
    No preview · Article · Jun 2012 · RSC Advances
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new analytical method for the determination of ochratoxin A (OTA) in red wine has been developed by using a double-extract cleanup and a fluorometric measurement after spectral deconvolution. Wine samples were diluted with a solution containing 1% polyethylene glycol and 5% sodium hydrogencarbonate, filtered, and purified by immunoaffinity and aminopropyl solid-phase column. OTA contents in the purified extract were determined by a spectrofluorometer (excitation wavelength, 330 nm; emission wavelength, 470 nm) after deconvolution of fluorescence spectra. Average recoveries from wine samples spiked with OTA at levels ranging from 0.5 to 3.0 ng/mL were 94.5-105.4% with relative standard deviations (RSD) of <15% (n = 4). The limit of detection (LOD) was 0.2 ng/mL, and the total time of analysis was 30 min. The developed method was tested on 18 red wine samples (naturally contaminated and spiked with OTA at levels ranging from 0.4 to 3.0 ng/mL) and compared with AOAC Official Method 2001.01, based on immunoaffinity column cleanup and HPLC with fluorescence detector. A good correlation (r(2) = 0.9765) was observed between OTA levels obtained with the two methods, highlighting the reliability of the proposed method, the main advantage of which is the simple OTA determination by a benchtop fluorometer with evident reductions of cost and time of analysis.
    Full-text · Article · Sep 2012 · Journal of Agricultural and Food Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new sample preparation procedure, termed pH-controlled dispersive liquid-liquid microextraction (pH-DLLME), has been developed for the analysis of ionisable compounds in highly complex matrices. This DLLME mode, intended to improve the selectivity and to expand the application range of DLLME, is based on two successive DLLMEs conducted at opposite pH values. pH-DLLME was applied to determination of ochratoxin A (OTA) in cereals. The hydrophobic matrix interferences in the raw methanol extract (disperser, 1mL) were removed by a first DLLME (I DLLME) performed at pH 8 to reduce the solubility of OTA in the extractant (CCl(4), 400μL). The pH of the aqueous phase was then adjusted to 2, and the analyte was extracted and concentrated by a second DLLME (extractant, 150μL C(2)H(4)Br(2)). The main factors influencing the efficiency of pH-DLLME including type and volume of I DLLME extractant, as well as the parameters affecting the OTA extraction by II DLLME, were studied in detail. Under optimum conditions, the method has detection and quantification limits of 0.019 and 0.062μgkg(-1), respectively, with OTA recoveries in the range of 81.2-90.1% (n=3). The accuracy of the analytical procedure, evaluated with a reference material (cereal naturally contaminated with OTA), is acceptable (accuracy of 85.6%±1.7, n=5). The applicability of pH-DLLME to the selective extraction of other ionisable compounds, such as acidic and basic pharmaceutical products was also demonstrated. The additional advantages of pH-DLLME are a higher selectivity and the extension of this microextraction technique to highly complex matrices.
    Full-text · Article · Nov 2012 · Analytica chimica acta
Show more