Postnatal loss of brainstem serotonin neurons compromises the ability of neonatal rats to survive episodic severe hypoxia

ArticleinThe Journal of Physiology 589(Pt 21):5247-56 · September 2011with17 Reads
Impact Factor: 5.04 · DOI: 10.1113/jphysiol.2011.214445 · Source: PubMed
Abstract

Pet-1(-/-) mice with a prenatal, genetically induced loss of 5-hydroxytryptamine (5-HT, serotonin) neurones are compromised in their ability to withstand episodic environmental anoxia via autoresuscitation. Given the prenatal role of 5-HT neurones in the development of neural networks, here we ask if a postnatal loss of 5-HT neurones also compromises autoresuscitation. We treated neonatal rat pups at postnatal day (P)2-3 with an intra-cisternal injection of 5,7-dihydroxytryptamine (5,7-DHT; ~40 μg; n = 8) to pharmacologically lesion the 5-HT system, or vehicle (control; n = 14). At P7-10 we exposed unanaesthetized treated and control pups to 15 episodes of environmental anoxia (97% N(2), 3% CO(2)). Medullary 5-HT content was reduced 80% by 5,7-DHT treatment (P < 0.001). Baseline ventilation (V(E)), metabolic rate (V(O(2))), ventilatory equivalent (V(E)/V(O(2))), heart rate (HR), heart rate variability (HRV) and arterial haemoglobin saturation (S(aO(2))) were no different in 5-HT-deficient pups compared to controls. However, only 25% of 5-HT-deficient pups survived all 15 episodes of environmental anoxia, compared to 79% of control littermates (P = 0.007). High mortality of 5,7-DHT-treated pups was associated with delayed onset of gasping (P < 0.001), delayed recovery of HR from hypoxic-induced bradycardia (P < 0.001), and delayed recovery of eupnoea from hypoxic-induced apnoea (P < 0.001). Treatment with 5,7-DHT affected neither the gasping pattern once initiated, nor HR, V(E)/V(O(2)) or S(aO(2)) during the intervening episodes of room air. A significant increase in HRV occurred in all animals with repeated exposure, and in 5-HT-deficient pups this increase occurred immediately prior to death. We conclude that a postnatal loss of brainstem 5-HT content compromises autoresuscitation in response to environmental anoxia. This report provides new evidence in rat pups that 5-HT neurones serve a physiological role in autoresuscitation. Our data may be relevant to understanding the aetiology of the sudden infant death syndrome (SIDS), in which there is medullary 5-HT deficiency and in some cases evidence of severe hypoxia and failed autoresuscitation.

Full-text

Available from: Kevin James Cummings