Prevalence of low-level HIV-1 variants with reverse transcriptase mutation K65R and the effect of antiretroviral drug exposure on variant levels

Yale University School of Medicine and Veterans Affairs Connecticut Healthcare System, New Haven, CT, USA.
Antiviral therapy (Impact Factor: 3.02). 01/2011; 16(6):925-9. DOI: 10.3851/IMP1851
Source: PubMed


It has been reported that treatment-naive individuals infected with HIV-1 subtype C may be more likely to harbour viral variants possessing a K65R reverse transcriptase gene mutation. The objectives of this study were to determine the prevalence of low-level K65R variants within different HIV-1 subtypes and to assess the effects of antiretroviral exposure on K65R variant levels.
Treatment-naive individuals infected with different HIV-1 subtypes were genotyped by ultra-deep sequencing. Samples were evaluated for low-level variants to 0.4% or 1% levels depending upon viral load. Estimated mutational load was calculated by multiplying the percentage of the variant by the plasma viral load.
A total of 411 treatment-naive individuals were evaluated by ultra-deep sequencing to 1% levels; 4 subjects (0.97%) had K65R variants at ≥1% or had a very high mutation load. All four subjects had variants with linked drug resistance mutations suggesting transmitted resistant variants. 147 ARV-naive subjects were sequenced to 0.4% levels; 8.8% (13/147) had K65R low-level variants identified: 2.2% (2/92) in subtype B, 35.7% (10/28) in subtype C (P<0.001 for B versus C) and 3.7% (1/27) in non-B/C subtypes. The 13 ARV-naive subjects with K65R variants at <1% received tenofovir plus emtricitabine plus a ritonavir-boosted protease inhibitor (TDF+FTC+PI/r) and 5 subsequently experienced virological failure. There was no enhancement in K65R levels by percentage or mutational load compared to pre-therapy levels.
Low-level K65R variants were more frequently identified in subtype C. K65R variants at >1% levels likely represent transmitted resistant variants. The clinical implication of low-level K65R variants below 1% in treatment-naive subjects who receive TDF+FTC+PI/r remains to be determined as the majority are very low-level and did not increase after antiretroviral exposure.

31 Reads
  • Source
    • "Although UDPS has limitations particularly with regard to polymerization and pyrosequencing errors [13], [16], recent studies with different methods (UDPS, allele specific PCR) have shown that K65R is identified more frequently in subtype C HIV-1 from naïve patients [14], [17]. In our naïve patients, there was a clear difference between K70R (mean 0%) and K65R (mean 0.66%) (Table 2). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We and others have shown that subtype C HIV-1 isolates from patients failing on a regimen containing stavudine (d4T) or zidovudine (AZT) exhibit thymidine-associated mutations (TAMs) and K65R which can impair the efficacy of Tenofovir (TDF) at second line. Depending on the various studies, the prevalence of K65R substitution as determined by the Sanger method ranges from 4 to 30%. Our aim was to determine whether ultra-deep pyrosequencing (UDPS) could provide more information than the Sanger method about selection of K65R in this population of patients.
    Full-text · Article · May 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies have suggested that the K65R reverse transcriptase (RT) mutation develops more readily in subtype C than subtype B HIV-1. We recently showed that this discrepancy lies partly in the subtype C template coding sequence that predisposes RT to pause at the site of K65R mutagenesis. However, the mechanism underlying this observation and the elevated rates of K65R development remained unknown. Here, we report that DNA synthesis performed with subtype C templates consistently produced more K65R-containing transcripts than subtype B templates, regardless of the subtype-origin of the RT enzymes employed. These findings confirm that the mechanism involved is template-specific and RT-independent. In addition, a pattern of DNA synthesis characteristic of site-specific primer/template slippage and dislocation was only observed with the subtype C sequence. Analysis of RNA secondary structure suggested that the latter was unlikely to impact on K65R development between subtypes and that Streisinger strand slippage during DNA synthesis at the homopolymeric nucleotide stretch of the subtype C K65 region might occur, resulting in misalignment of the primer and template. Consequently, slippage would lead to a deletion of the middle adenine of codon K65 and the production of a -1 frameshift mutation, which upon dislocation and realignment of the primer and template, would lead to development of the K65R mutation. These findings provide additional mechanistic evidence for the facilitated development of the K65R mutation in subtype C HIV-1.
    Full-text · Article · May 2011 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus type 1 (HIV-1) drug resistance may limit the benefits of antiretroviral therapy (ART). This cohort study examined patterns of drug-resistance mutations (DRMs) in individuals with virological failure on first-line ART at 13 clinical sites in 6 African countries and predicted their impact on second-line drug susceptibility. A total of 2588 antiretroviral-naive individuals initiated ART consisting of different nucleoside reverse transcriptase inhibitor (NRTI) backbones (zidovudine, stavudine, tenofovir, or abacavir, plus lamivudine or emtricitabine) with either efavirenz or nevirapine. Population sequencing after 12 months of ART was retrospectively performed if HIV RNA was >1000 copies/mL. The 2010 International Antiviral Society-USA list was used to score major DRMs. The Stanford algorithm was used to predict drug susceptibility. HIV-1 sequences were generated for 142 participants who virologically failed ART, of whom 70% carried ≥1 DRM and 49% had dual-class resistance, with an average of 2.4 DRMs per sequence (range, 1-8). The most common DRMs were M184V (53.5%), K103N (28.9%), Y181C (15.5%), and G190A (14.1%). Thymidine analogue mutations were present in 8.5%. K65R was frequently selected by stavudine (15.0%) or tenofovir (27.7%). Among participants with ≥1 DRM, HIV-1 susceptibility was reduced in 93% for efavirenz/nevirapine, in 81% for lamivudine/emtricitabine, in 59% for etravirine/rilpivirine, in 27% for tenofovir, in 18% for stavudine, and in 10% for zidovudine. Early failure detection limited the accumulation of resistance. After stavudine failure in African populations, zidovudine rather than tenofovir may be preferred in second-line ART. Strategies to prevent HIV-1 resistance are a global priority.
    Full-text · Article · Apr 2012 · Clinical Infectious Diseases
Show more