Erratum: Combined effects of 60 Hz electromagnetic field exposure with various stress factors on cellular transformation in NIH3T3 cells: Erratum

Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.
Bioelectromagnetics (Impact Factor: 1.71). 01/2014; 33(3):207-14. DOI: 10.1002/bem.20700
Source: PubMed


Epidemiological studies have suggested that extremely low-frequency magnetic fields (ELF-MF) are associated with an increased incidence of cancer. Studies using in vitro systems have reported mixed results for the effects of ELF-MF alone, and the World Health Organization (WHO) Research Agenda published in 2007 suggested that high priority research should include an evaluation of the co-carcinogenic effects of ELF-MF exposure using in vitro models. Here, the carcinogenic potential of ELF-MF exposure alone and in combination with various stress factors was investigated in NIH3T3 mouse fibroblasts using an in vitro cellular transformation assay. NIH3T3 cells were exposed to a 60 Hz ELF-MF (1 mT) alone or in combination with ionizing radiation (IR), hydrogen peroxide (H₂O₂), or c-Myc overexpression, and the resulting number of anchorage-independent colonies was counted. A 4 h exposure of NIH3T3 cells to ELF-MF alone produced no cell transformation. Moreover, ELF exposure did not influence the transformation activity of IR, H₂O₂, or activated c-Myc in our in vitro assay system, suggesting that 1 mT ELF-MF did not affect any additive or synergistic transformation activities in combination with stress factors such as IR, H₂O₂, or activated c-Myc in NIH3T3 cells.

Download full-text


Available from: Yeung Bae Jin, Jul 30, 2014
  • Source
    • "These data suggest an oxidative stress response following some RF EMF exposure programs and led to the hypothesis that long-term exposure to EMF would cause chronic elevation of ROS and subsequent decrease in melatonin, leading to an increased risk for DNA damage and malignancy[39]. However, there have not been indications of increased transformation following EMF exposure alone or in combination with other stress factors, suggesting that EMF did not work in synergy with other stress factors to transform the cells[40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration allows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue- and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer.
    Full-text · Article · Nov 2013 · Ai zheng = Aizheng = Chinese journal of cancer
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies have demonstrated a possible correlation between exposure to extremely low-frequency magnetic fields (ELF-MF) and cancer. However, this correlation has yet to be definitively confirmed by epidemiological studies. The principal objective of this study was to assess the effects of 60 Hz magnetic fields in a normal cell line system, and particularly in combination with various external factors, via micronucleus (MN) assays. Mouse embryonic fibroblast NIH3T3 cells and human lung fibroblast WI-38 cells were exposed for 4 h to a 60 Hz, 1 mT uniform magnetic field with or without ionizing radiation (IR, 2 Gy), H(2)O(2) (100 μM) and cellular myelocytomatosis oncogene (c-Myc) activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic effects were observed when ELF-MF was combined with IR, H(2)O(2), and c-Myc activation. Our results demonstrate that ELF-MF did not enhance MN frequency by IR, H(2)O(2) and c-Myc activation.
    No preview · Article · Dec 2011 · International Journal of Radiation Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exposures to extremely low frequency magnetic field (ELF-MF) in our environment have dramatically increased. Epidemiological studies suggest that there is a possible association between ELF-MF exposure and increased risks of cardiovascular disease, cancers and neurodegenerative disorders. Animal studies show that ELF-MF exposure may interfere with the activity of brain cells, generate behavioral and cognitive disturbances, and produce deficits in attention, perception and spatial learning. Although, many research efforts have been focused on the interaction between ELF-MF exposure and the central nervous system, the mechanism of interaction is still unknown. In this study, we examined the effects of ELF-MF exposure on learning in mice using two water maze tasks and on some parameters indicative of oxidative stress in the hippocampus and striatum. We found that ELF-MF exposure (1 mT, 50 Hz) induced serious oxidative stress in the hippocampus and striatum and impaired hippocampal-dependent spatial learning and striatum-dependent habit learning. This study provides evidence for the association between the impairment of learning and the oxidative stress in hippocampus and striatum induced by ELF-MF exposure.
    Preview · Article · May 2012 · PLoS ONE
Show more