The ERM protein, Ezrin, regulates neutrophil transmigration by modulating the apical localization of MRP2 in response to the SipA effector protein during Salmonella Typhimurium infection

ArticleinCellular Microbiology 13(12):2007-21 · September 2011with8 Reads
DOI: 10.1111/j.1462-5822.2011.01693.x · Source: PubMed
In human disease induced by Salmonella enterica serovar Typhimurium (S. Typhimurium), transepithelial migration of neutrophils rapidly follows attachment of the bacteria to the epithelial apical membrane. We have previously shown that during S. Typhimurium infection the multidrug resistance-associated protein 2 (MRP2) is highly expressed at the apical surface of the intestinal epithelia, and that it functions as an efflux pump for the potent neutrophil chemoattractant hepoxilin A(3) . However, the molecular mechanisms regulating its apical localization during active states of inflammation remain unknown. Thus, our objective was to determine the mechanistic basis for the translocation of MRP2 to the apical surface of intestinal epithelial cells during S. Typhimurium infection. We show that suppression of ezrin, through either RNAi or truncation of the C-terminus, results not only in a decrease in S. Typhimurium-induced neutrophil transmigration but also significantly attenuates the apical membrane expression of MRP2 during Salmonella infection. In addition, we determined that S. Typhimurium induces the activation of ezrin via a PKC-α-dependent pathway and that ezrin activation is coupled to apical localization of MRP2. Based on these results we propose that activation of ezrin is required for the apical localization of MRP2 during S. Typhimurium infection.
    • "The eluates were then diluted in 4X tricine loading dye, boiled, and examined via western blot for the presence of SipC-GST (not shown) and PERP. (Agbor et al., 2011a). Following 1 hour infection, the apical surface of HCT8 monolayers was labeled with biotin (Thermo Scientific) at 4C. Labeling of the basolateral surface was blocked with acetate (Thermo Scientific). "
    [Show abstract] [Hide abstract] ABSTRACT: Salmonella enterica subtype Typhimurium (S. Typhimurium) is one of many non-typhoidal Salmonella enterica strains responsible for over one million cases of salmonellosis in the United States each year. These Salmonella strains are also a leading cause of diarrheal disease in developing countries. Nontyphoidal salmonellosis induces gastrointestinal distress that is characterized histopathologically by an influx of polymorphonuclear leukocytes (PMNs), the non-specific effects of which lead to tissue damage and contribute to diarrhea. Prior studies from our lab have demonstrated that the type III secreted bacterial effector SipA is a key regulator of PMN influx during S. Typhimurium infection and that its activity requires processing by caspase-3. Although we established caspase-3 activity is required for the activation of inflammatory pathways during S. Typhimurium infection, the mechanisms by which caspase-3 is activated remain incompletely understood. Most challenging is the fact that SipA is responsible for activating caspase-3, which begs the question of how SipA can activate an enzyme it requires for its own activity. In the present study, we describe our findings that the eukaryotic tetraspanning membrane protein PERP is required for the S. Typhimuriuminduced influx of PMNs. We further show that S. Typhimurium infection induces PERP accumulation at the apical surface of polarized colonic epithelial cells, and that this accumulation requires SipA. Strikingly, PERP accumulation occurs in the absence of caspase-3 processing of SipA, which is the first time we have shown SipA mediates a cellular event without first requiring caspase-3 processing. Previous work demonstrates that PERP mediates the activation of caspase-3, and we find that PERP is required for Salmonella-induced caspase-3 activation. Our combined data support a model in which SipA triggers caspase-3 activation via its cellular modulation of PERP. Since SipA can set this pathway in motion without being cleaved by caspase-3, we propose that PERP-mediated caspase-3 activation is required for the activation of SipA, and thus is a key step in the inflammatory response to S. Typhimurium infection. Our findings further our understanding of how SipA induces inflammation during S. Typhimurium infection, and also provide additional insight into how type III secreted effectors manipulate host cells.
    Article · Oct 2015 · Frontiers in Immunology
    • "Apical cell surface biotinylation was performed using the protocol described by Agbor et al. (2011). Following infection, the apical surface of HCT8 monolayers was labeled with biotin at 4°C. "
    [Show abstract] [Hide abstract] ABSTRACT: Salmonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of PMN transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast-two-hybrid screen, we identified the tetraspanning membrane protein, PERP (p53-effector related to PMP-22), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface. This article is protected by copyright. All rights reserved.
    Full-text · Article · Dec 2014
    • "Phosphatidic acid is then converted to diacylglycerol (DAG), which recruits protein kinase C-α (PKC-α) to the apical membrane (Figure 2). PKC-α, in addition to an ERM protein ezrin, modulate the localization of MRP2 to the apical membrane of epithelial cells, thereby allowing the secretion of HXA3 into the lumen and production of the chemattractant gradient that induces neutrophil transmigration (Figure 2) (72, 74, 75). "
    [Show abstract] [Hide abstract] ABSTRACT: The human intestinal epithelium consists of a single layer of epithelial cells that forms a barrier against food antigens and the resident microbiota within the lumen. This delicately balanced organ functions in a highly sophisticated manner to uphold the fidelity of the intestinal epithelium and to eliminate pathogenic microorganisms. On the luminal side, this barrier is fortified by a thick mucus layer, and on the serosal side exists the lamina propria containing a resident population of immune cells. Pathogens that are able to breach this barrier disrupt the healthy epithelial lining by interfering with the regulatory mechanisms that govern the normal balance of intestinal architecture and function. This disruption results in a coordinated innate immune response deployed to eliminate the intruder that includes the release of antimicrobial peptides, activation of pattern-recognition receptors, and recruitment of a variety of immune cells. In the case of Salmonella enterica serovar typhimurium (S. typhimurium) infection, induction of an inflammatory response has been linked to its virulence mechanism, the type III secretion system (T3SS). The T3SS secretes protein effectors that exploit the host's cell biology to facilitate bacterial entry and intracellular survival, and to modulate the host immune response. As the role of the intestinal epithelium in initiating an immune response has been increasingly realized, this review will highlight recent research that details progress made in understanding mechanisms underlying the mucosal inflammatory response to Salmonella infection, and how such inflammatory responses impact pathogenic fitness of this organism.
    Full-text · Article · Jul 2014
Show more