General and Abdominal Obesity and Risk of Death among Black Women

Slone Epidemiology Center at Boston University, Boston, MA 02215, USA.
New England Journal of Medicine (Impact Factor: 55.87). 09/2011; 365(10):901-8. DOI: 10.1056/NEJMoa1104119
Source: PubMed


Recent pooled analyses show an increased risk of death with increasing levels of the body-mass index (BMI, the weight in kilograms divided by the square of the height in meters) of 25.0 or higher in populations of European ancestry, a weaker association among East Asians, and no association of an increased BMI with an increased risk of death among South Asians. The limited data available on blacks indicate that the risk of death is increased only at very high levels of BMI (≥35.0).
We prospectively assessed the relation of both BMI and waist circumference to the risk of death among 51,695 black women with no history of cancer or cardiovascular disease who were 21 to 69 years of age at study enrollment. Our analysis was based on follow-up data from 1995 through 2008 in the Black Women's Health Study. Multivariable proportional-hazards models were used to estimate hazard ratios and 95% confidence intervals.
Of 1773 deaths identified during follow-up, 770 occurred among 33,916 women who had never smoked. Among nonsmokers, the risk of death was lowest for a BMI of 20.0 to 24.9. For a BMI above this range, the risk of death increased as the BMI increased. With a BMI of 22.5 to 24.9 as the reference category, multivariable-adjusted hazard ratios were 1.12 (95% confidence interval [CI], 0.87 to 1.44) for a BMI of 25.0 to 27.4, 1.31 (95% CI, 1.01 to 1.72) for a BMI of 27.5 to 29.9, 1.27 (95% CI, 0.99 to 1.64) for a BMI of 30.0 to 34.9, 1.51 (95% CI, 1.13 to 2.02) for a BMI of 35.0 to 39.9, and 2.19 (95% CI, 1.62 to 2.95) for a BMI of 40.0 to 49.9 (P<0.001 for trend). A large waist circumference was associated with an increased risk of death from any cause among women with a BMI of less than 30.0.
The risk of death from any cause among black women increased with an increasing BMI of 25.0 or higher, which is similar to the pattern observed among whites. Waist circumference appeared to be associated with an increased risk of death only among nonobese women. (Funded by the National Cancer Institute.).

Download full-text


Available from: Deborah Boggs Bookwalter
  • Source
    • "In black women who were never smokers and had no cancer or heart disease at baseline, class II and III obesity, but not overweight and class I obesity, were related to an increased risk of death in our study and in the Cancer Prevention Study II [9]. Conversely, the Black Women’s Health Study reported a significantly increased total mortality among overweight (RR = 1.31, 95% CI:1.01, 1.72, BMI 27.5–<30 vs. 22.5–<25) and class I (RR = 1.27, 95% CI:0.99, 1.64), class II (RR = 1.51, 95% CI:1.13, 2.02), and class III (RR = 2.19, 95% CI:1.62, 2.95) obese women who were healthy never smokers [14]. The Multiethnic Cohort Study also found an increased risk of total mortality among never smoked black women: RR (95% CI) was 1.23 (0.97, 1.54) for BMI 27.5–<30, 1.45 (1.16, 1.80) for BMI 30–<35, and 1.74 (1.37, 2.20) for BMI ≥35 compared with BMI 23.0–<25. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the prevalence of obesity (body mass index, kg/m(2), BMI ≥30) is higher in non-Hispanic blacks than in non-Hispanic whites, the relation of BMI to total mortality in non-Hispanic blacks is not well defined. We investigated the association between BMI and total mortality in 16,471 non-Hispanic blacks in the NIH-AARP Diet and Health Study, a prospective cohort of adults aged 50-71 years. During an average of 13 years of follow-up, 2,609 deaths were identified using the Social Security Administration Death Master File and the National Death Index. Cox proportional hazard models were used to estimate relative risks and two-sided 95% confidence intervals (CI), adjusting for potential confounders. Among individuals with no history of cancer or heart disease at baseline and had a BMI of 20 or greater, the relative risk for total death was 1.12 (95% CI:1.05, 1.19, for a 5-unit increase in BMI) in men and 1.09 (95% CI:1.03, 1.15) in women. Among never smokers with no history of cancer or heart disease at baseline, relative risks for total death for BMI 25-<30, 30-<35, 35-<40, and 40-50, compared with BMI 20-<25, were 1.27 (95% CI: 0.91, 1.78), 1.56 (95% CI: 1.07, 2.28), 2.48 (95% CI: 1.53, 4.05), and 2.80 (95% CI: 1.46, 5.39), respectively, in men and 0.78 (95% CI: 0.59, 1.04), 1.17 (95% CI: 0.88, 1.57), 1.35 (95% CI: 0.96, 1.90), and 1.93 (95% CI: 1.33, 2.81), respectively, in women. Our findings suggest that overweight is related to an increased risk of death in black men, but not in black women, while obesity is related to an increased risk of death in both black men and women. A large pooled analysis of existing studies is needed to systematically evaluate the association between a wide range of BMIs and total mortality in blacks.
    Full-text · Article · Nov 2012 · PLoS ONE
  • Source
    • "Across the age spectrum, critical metabolic and cardiovascular morbidity (type 2 diabetes, hypertension, metabolic syndrome, coronary heart disease, stroke) is causally linked to obesity [2], [4], [5]. Cardiovascular and all-cause mortality are strongly related to overweight and obesity irrespective of age, sex, and ethnicity [6]–[9]. Therefore, measures of primary, genuine prevention are urgently needed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Overweight is among the major challenging health risk factors. It has been claimed that birth weight, being a critical indicator of prenatal developmental conditions, is related to long-term overweight risk. In order to check this important assumption of developmental and preventive medicine, we performed a systematic review and comprehensive meta-analysis. Relevant studies published up to January 2011 that investigated the relation between birth weight and later risk of overweight were identified through literature searches using MEDLINE and EMBASE. For meta-analysis, 66 studies from 26 countries and five continents were identified to be eligible, including 643,902 persons aged 1 to 75 years. We constructed random-effects and fixed-effects models, performed subgroup-analyses, influence-analyses, assessed heterogeneity and publication bias, performed meta-regression analysis as well as analysis of confounder adjusted data. Meta-regression revealed a linear positive relationship between birth weight and later overweight risk (p<0.001). Low birth weight (<2,500 g) was found to be followed by a decreased risk of overweight (odds ratio (OR) = 0.67; 95% confidence interval (CI) 0.59-0.76). High birth weight (>4,000 g) was associated with increased risk of overweight (OR = 1.66; 95% CI 1.55-1.77). Results did not change significantly by using normal birth weight (2,500-4,000 g) as reference category (OR = 0.73, 95% CI 0.63-0.84, and OR = 1.60, 95% CI 1.45-1.77, respectively). Subgroup- and influence-analyses revealed no indication for bias/confounding. Adjusted estimates indicate a doubling of long-term overweight risk in high as compared to normal birth weight subjects (OR = 1.96, 95% CI 1.43-2.67). Findings demonstrate that low birth weight is followed by a decreased long-term risk of overweight, while high birth weight predisposes for later overweight. Preventing in-utero overnutrition, e.g., by avoiding maternal overnutrition, overweight and/or diabetes during pregnancy, might therefore be a promising strategy of genuine overweight prevention, globally.
    Full-text · Article · Oct 2012 · PLoS ONE
  • Source
    • "It is associated with an increased risk of numerous chronic diseases. It is also associated with an increased risk of death in populations of European ancestry and black women [110]. As a result, obesity epidemic exerts a heavy toll on the economy with its massive health care costs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of obesity, which is a heritable trait that arises from the interactions of multiple genes and lifestyle factors, continues to increase worldwide, causing serious health problems and imposing a substantial economic burden on societies. For the past several years, various genetic epidemiological approaches have been utilized to identify genetic loci for obesity. Recent evidence suggests that development of obesity involves hormones and neurotransmitters (such as leptin, cocaine- and amphetamine-regulated transcript (CART), and ghrelin) that regulate appetite and energy expenditure. These hormones act on specific centers in the brain that regulate the sensations of satiety. Mutations in these hormones or their receptors can lead to obesity. Aberrant circadian rhythms and biochemical pathways in peripheral organs or tissues have also been implicated in the pathology of obesity. More interestingly, increasing evidence indicates a potential relation between obesity and central nervous system disorders (such as cognitive deficits). This paper discusses recent advances in the field of genetics of obesity with an emphasis on several established loci that influence obesity. These recently identified loci may hold the promise to substantially improve our insights into the pathophysiology of obesity and open up new therapeutic strategies to combat growing obesity epidemic facing the human population today.
    Full-text · Article · Mar 2012
Show more