Identification of citrullinated histone H3 as a potential serum protein biomarker in a lethal model of lipopolysaccharide-induced shock

Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital/ Harvard Medical School, Boston, MA, USA.
Surgery (Impact Factor: 3.38). 09/2011; 150(3):442-51. DOI: 10.1016/j.surg.2011.07.003
Source: PubMed


Circulating proteins may serve as biomarkers for the early diagnosis and treatment of shock. We have recently demonstrated that treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, significantly improves survival in a rodent model of lipopolysaccharide (LPS)-induced septic shock. Preliminary proteomic data showed that LPS-induced shock altered a number of proteins in circulation, including histone H3 (H3) and citrullinated histone H3 (Cit H3). The present study was designed to confirm these findings and to test whether the pro-survival phenotype could be detected by an early alteration in serum biomarkers.
Three experiments were performed. In experiment I, Western blotting was performed on serum samples from male C57B1/6J mice (n = 9, 3/group) that belonged to the following groups: (a) LPS (20 mg/kg)-induced septic shock, (b) SAHA-treated septic shock, and (c) sham (no LPS, no SAHA). In experiment II, HL-60 granulocytes were cultured and treated with LPS (100 ng/m1) in the absence or presence of SAHA (10 μmol/L). Sham (no LPS, no SAHA) granulocytes served as controls. The medium and cells were harvested at 3 hours, and proteins were measured with Western blots. In experiment III, a large dose (LD, 35 mg/kg) or small dose (SD, 10 mg/kg) of LPS was injected intraperitoneally into the C57B1/6J mice (n = 10 per group). Blood was collected at 3 hours, and serum proteins were determined by Western blots or enzyme-linked immunosorbent assay (ELISA). All of the Western blots were performed with antibodies against H3, Cit H3, and acetylated H3 (Ac H3). ELISA was performed with antibody against tumor necrosis factor (TNF)-α. Survival rates were recorded over 7 days.
In experiment I, intraperitoneal (IP) injection of LPS (20 mg/kg) significantly increased serum levels of H3, which was prevented by SAHA treatment. In experiment II, LPS (100 ng/mL) induced expression and secretion of Cit H3 and H3 proteins in neutrophilic HL-60 cells, which was decreased by SAHA treatment. In experiment III, administration of LPS (LD) caused a rise in serum H3 and Cit H3 but not Ac H3 at 3 hours, and all of these animals died within 23 hours (100% mortality). Decreasing the dose of LPS (SD) significantly reduced the mortality rate (10% mortality) as well as the circulating levels of Cit H3 (non detectable) and H3. An increase in serum TNF-α was found in both LPS (LD) and (SD) groups, but in a non-dose-dependent fashion.
Our results reveal for the first time that Cit H3 is released into circulation during the early stages of LPS-induced shock. Moreover, serum levels of Cit H3 are significantly associated with severity of LPS-induced shock. Therefore, Cit H3 could serve as a potential protein biomarker for early diagnosis of septic shock, and for predicting its lethality.

Download full-text


Available from: Wei Chong, Oct 20, 2015
  • Source
    • "A member of the H2A histone family, Hist2h2aa1, was also significantly downregulated at 24 hpi in vivo in mouse bladder colonized with UPEC CFT073 (Tan et al., 2012), which is consistent with these findings. Interestingly, previous studies have reported a pathological role for extracellular histones during LPS-induced septic shock (Xu et al., 2009; Li et al., 2011). Xu et al. (2011) revealed that antibodies against extracellular histones rescued animals from LPSmediated death (Xu et al., 2011), and a previous study showed that extracellular histones mediate endothelial dysfunction, organ failure and death during sepsis (Semeraro et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional program associated with intramacrophage survival, we performed host-pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. BMMs responded to the two UPEC strains with a broadly similar gene expression program. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes upregulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment. This article is protected by copyright. All rights reserved.
    Full-text · Article · Nov 2014 · Cellular Microbiology
  • Source
    • "Complexes of nucleic acids and proteins, including histones, are estimated to circulate at the level of several hundreds of nanograms per ml [62]. It has been suggested that modified histones, complexed with nucleic acids in the plasma, may be biomarkers of cancer [59,60]. High mobility group proteins and histones may be secreted by cells in response to immunological activation and have been reported to be a biomarker of lupus or other diseases reaching concentrations as high as 40 ng/ml in blood [58-60]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein biomarkers offer major benefits for diagnosis and monitoring of disease processes. Recent advances in protein mass spectrometry make it feasible to use this very sensitive technology to detect and quantify proteins in blood. To explore the potential of blood biomarkers, we conducted a thorough review to evaluate the reliability of data in the literature and to determine the spectrum of proteins reported to exist in blood with a goal of creating a Federated Database of Blood Proteins (FDBP). A unique feature of our approach is the use of a SQL database for all of the peptide data; the power of the SQL database combined with standard informatic algorithms such as BLAST and the statistical analysis system (SAS) allowed the rapid annotation and analysis of the database without the need to create special programs to manage the data. Our mathematical analysis and review shows that in addition to the usual secreted proteins found in blood, there are many reports of intracellular proteins and good agreement on transcription factors, DNA remodelling factors in addition to cellular receptors and their signal transduction enzymes. Overall, we have catalogued about 12,130 proteins identified by at least one unique peptide, and of these 3858 have 3 or more peptide correlations. The FDBP with annotations should facilitate testing blood for specific disease biomarkers.
    Full-text · Article · Jan 2014 · Clinical Proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic derangements, including insulin resistance and hyperlactatemia, are a major complication of major trauma (e.g., burn injury) and affect the prognosis of burn patients. Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been emerging as a potential component of inflammatory response in sepsis. However, farnesylation has not yet been studied in major trauma. To study a role of farnesylation in burn-induced metabolic aberration, we examined the effects of farnesyltransferase (FTase) inhibitor, FTI-277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle.
    Full-text · Article · Jan 2015 · PLoS ONE
Show more