Article

Synthesis and characterization of nanocrystalline calcium sulfate for use in osseous regeneration

Yonsei University College of Dentistry, Seodaemun-gu, Seoul, Korea.
Biomedical Materials (Impact Factor: 3.7). 08/2011; 6(5):055007. DOI: 10.1088/1748-6041/6/5/055007
Source: PubMed

ABSTRACT

Nanoparticles of calcium sulfate (nCS) have potential advantages as a ceramic matrix, scaffold and/or vehicle for delivering growth factors for osseous regeneration in a variety of clinical situations. The objectives of this study were to synthesize and characterize nanoparticles of hemihydrate calcium sulfate (nCS) and to develop a nCS-based system for bone regeneration. A cryo-vacuum method was used to process dihydrate CS into dihydrate nCS, which was then subjected to oven drying to produce hemihydrate. The nCS was sterilized by glow discharge treatment for use as a synthetic graft material for the treatment of bone defects. Electron microscopy showed that the nCS powder consisted of aggregates of closely arranged acicular crystals, approximately 30-80 nm in width, 400-600 nm in length and approximately 80-100 nm in diameter, providing a surface area about ten times that of conventional CS. Thorough physico-chemical characterization confirmed the composition and phase of the material. Cell viability/metabolic activity assays and alkaline phosphate assays confirmed the safety and biocompatibility of nCS. Release kinetics for adsorbed platelet-derived growth factor and bone morphogenetic protein-2 (BMP-2) suggests that nCS may serve as an appropriate vehicle for slow release delivery of these agents. The studies presented here give evidence of the advantages of nCS as a scaffold to support osteoblastic cell activity.

Download full-text

Full-text

Available from: Mark Swihart
  • Source
    • "nCS was produced according to the method of Park et al [35], [36]. Briefly, a cryo-vacuum process was used to convert calcium sulfate dihydrate microparticles into calcium sulfate dihydrate nanocrystals, then subjected to oven drying to obtain calcium sulfate hemihydrate nanoparticles (nCS) as described previously [37]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Current clinical therapies for critical-sized bone defects (CSBDs) remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs) is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A) scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2) gene-modified MSCs and endothelial progenitor cells (EPCs) could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone) and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm) caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs.
    Full-text · Article · Apr 2013 · PLoS ONE
  • Source

    Preview · Article · Jan 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Much research has been focused on developing bone morphogenetic protein-2(BMP-2) delivery systems to enhance bone formation in bone defect repair and bone tissue engineering. However, many of these current systems have several drawbacks associated with low loading efficiencies and reduced biological activities after release. Collagen scaffolds can be used as in delivery systems because of their biocompatibility. However, growth factors have naturally low affinity to collagen, which is disadvantageous for maintaining a sufficient growth factor concentration at the delivery sites. To enhance BMP-2 binding to collagen scaffolds, we chose a porous collagen scaffold that was chemically modified using Traut's reagent. The modified collagen scaffold allows cross-linking of the collagen fibers and is able to immobilize more BMP-2 after treatment with Sulfo-SMCC. We demonstrated that cross-linking led to a slower release rate of BMP-2, but did not reduce its biological activity. Moreover, more ectopic bone formation was induced by subcutaneous implants of cross-linked collagen treated with BMP-2. We concluded that collagen scaffolds chemically conjugated with BMP-2 using Traut's reagent and Sulfo-SMCC was an effective delivery system for use in bone defect repair and in bone tissue engineering.
    No preview · Article · May 2012 · Biomedical Materials
Show more