Molecular screening of the CYP4V2 gene in Bietti crystalline dystrophy that is associated with choroidal neovascularization

SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
Molecular vision (Impact Factor: 1.99). 07/2011; 17(214-18):1970-7.
Source: PubMed


Bietti crystalline dystrophy (BCD) is an autosomal recessive disease characterized by intraretinal deposits of multiple small crystals, with or without associated crystal deposits in the cornea. The disease is caused by mutation in the cytochrome p450, family 4, subfamily v, polypeptide 2 (CYP4V2) gene. Choroidal neovascularization (CNV) is a rare event in BCD. We report two cases of BCD associated with CNV. CYP4V2 and exon 5 of tissue inhibitor of metalloproteinase 3 (TIMP3) were screened in both cases. A patient with BCD, but without CNV, was also screened to identify pathogenic variations.
Three BCD families of Asian Indian origin were recruited after a comprehensive ophthalmic examination. Genomic DNA was isolated from blood leukocytes, and coding exons and flanking introns of CYP4V2 and exon 5 of TIMP3 were amplified via polymerase chain reaction (PCR) and were sequenced. Family segregation, control screening, and bioinformatics tools were used to assess the pathogenicity of the novel variations.
Of the three BCD patients, two had parafoveal CNV. The patient with BCD, but without CNV had novel single base-pair duplication (c.1062_1063dupA). This mutation results in a structurally defective and unstable protein with impaired protein function. Four novel benign variations (three in exons and one in an intron) were observed in the cohort. Screening of exon 5 of TIMP3 did not reveal any variation in these families.
A novel mutation was found in a patient with BCD but without CNV, while patients with BCD and CNV did not show any pathogenic variation. The modifier role of TIMP3 in the pathogenesis of CNV in BCD was partly ruled out, as no variation was observed in exon 5 of the gene. A larger BCD cohort with CNV needs to be studied and screened to understand the genetics of CNV in BCD.

Download full-text


Available from: Chetan Rao
  • Source
    • "This structural change may result in the loss of enzymatic activity [2]. The single nucleotide duplication mutation, c.1062dupA, was only detected once in an Indian BCD patient with this single mutation in one allele [14]. This study further supported it as a causative mutation by detecting compound mutations. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the clinical features and cytochrome P450 family 4 subfamily V polypeptide 2 (CYP4V2) gene mutations in 14 Chinese families with Bietti crystalline dystrophy (BCD). Seventeen patients from 14 unrelated Chinese families with BCD were recruited for complete clinical ophthalmic examination and genetic study. The 11 exons of CYP4V2 were amplified from genomic DNA of all patients and their family members by polymerase chain reaction (PCR) and then sequenced. Exons of TIMP3 were also sequenced in BCD patient associated with choroidal neovascularization (CNV). One hundred and seventy unrelated healthy Chinese subjects were screened for mutations in CYP4V2. All 17 patients with BCD had mutations in CYP4V2; one of these mutations was novel (c.219T>A, p.F73L) and four other mutations had been reported. The p.F73L mutation was a commonly detected mutation in our study (seven out of 34 alleles), either in the homozygous state or in the heterozygous state. Among the patients, considerable phenotypic variability was detected, both within and between families. Screening of TIMP3 did not find any mutation in the BCD patient associated with CNV. The novel CYP4V2 c.219T>A (p.F73L) mutation may be another recurrent mutation in Chinese patients with BCD. Our study expands the mutation spectrum of CYP4V2 and characterizes novel genotype-phenotype associations in Chinese patients with BCD.
    Full-text · Article · Apr 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bietti crystalline dystrophy (BCD) is a rare autosomal recessive disorder caused by mutation of the cytochrome P450, family 4, subfamily V, polypeptide 2 (CYP4V2) gene and characterized by retinal pigmentary abnormalities and scattered deposits of crystals in the retina and the marginal cornea. The aim of this study was to investigate the spectrum of mutations in CYP4V2 in Lebanese families, and to characterize the phenotype of patients affected with BCD. Nine patients from three unrelated Lebanese families were clinically and molecularly investigated. Detailed characterization of the patients' phenotype was performed with comprehensive ophthalmic examination, color vision study, fundus photography, visual field testing, retinal fluorescein angiography, electroretinography, and electrooculography. One family was followed for 12 years. The 11 exons of the CYP4V2 gene were sequenced. Symptoms consisting of night blindness, loss of paracentral visual field, and disturbed color vision were apparent during the third decade of life. Ophthalmoscopy revealed posterior pole crystalline deposits and areas of retinal pigment epithelium atrophy. Fluorescein angiography disclosed geographic areas of the pigment epithelium layer and choriocapillaris atrophy in the posterior pole and fundus periphery. The most striking findings were those of normal electroretinographic responses in some patients and clinical heterogeneity. Two mutations in CYP4V2 were found: p.I111T (c.332T>C) in exon 3 in two families and the novel p.V458M (c.1372G>A) mutation in exon 9 in one family. These patients are affected with Bietti crystalline dystrophy without corneal involvement. Variation in disease severity and electroretinographic responses suggests that environmental or additional genetic factors influence the course of the retinal disease. The CYP4V2 p.I111T (c.332T>C) mutant allele may be especially prevalent among patients with BCD in Lebanon, resulting from a single founder.
    Full-text · Article · May 2012 · Molecular vision

  • No preview · Article · Jan 2013 · Der Ophthalmologe
Show more