Enhancing Cell therapies from the Outside In: Cell Surface Engineering Using Synthetic Nanomaterials.

Department of Material Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.
Nano Today (Impact Factor: 15). 06/2011; 6(3):309-325. DOI: 10.1016/j.nantod.2011.04.001
Source: PubMed


Therapeutic treatments based on the injection of living cells are in clinical use and preclinical development for diseases ranging from cancer to cardiovascular disease to diabetes. To enhance the function of therapeutic cells, a variety of chemical and materials science strategies are being developed that engineer the surface of therapeutic cells with new molecules, artificial receptors, and multifunctional nanomaterials, synthetically endowing donor cells with new properties and functions. These approaches offer a powerful complement to traditional genetic engineering strategies for enhancing the function of living cells.

Download full-text


Available from: Darrell J Irvine
  • Source
    • "One alternative strategy that might overcome these targeting limitations is cell-mediated delivery [13] [14]. Certain cell types have the intrinsic ability to cross the endothelial barrier and infiltrate the tumor tissue, which makes them attractive carriers for NP delivery [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Following intravenous injection of anti-cancer nanomedicines, many barriers need to be overcome en route to the tumor. Cell-mediated delivery of nanoparticles (NPs) is promising in terms of overcoming several of these barriers based on the tumoritropic migratory properties of particular cell types. This guided transport aims to enhance the NP accumulation in the tumor and moreover enhance the infiltration of regions that are typically inaccessible for free NPs. Within this study, cytotoxic CD8(+) T cells were selected as carriers based on both their ability to migrate to the tumor and their intrinsic cytolytic activity against tumor cells. Many anti-cancer nanomedicines require tumor cell internalization to mediate cytosolic drug delivery and enhance the anti-cancer effect. This proof-of-concept therefore reports on the reversible attachment of liposomes to the surface of cytotoxic T lymphocytes via a reduction sensitive coupling. The activation status of the T cells and the liposome composition are shown to strongly influence the loading efficiency. Loading the cells with liposomes does not compromise T cell functionalities like proliferation and cytolytic function. Additionally, the triggered liposome release is demonstrated upon the addition of glutathione. Based on this optimization using liposomes as model NPs, a small interfering RNA (siRNA)-loaded NP was developed that can be coupled to the surface of CD8(+) T cells.
    Full-text · Article · Nov 2015 · Biomaterials
  • Source
    • "The targeting approaches described in the following section are categorized as antibody-, genetically-, selectin-, and peptide-directed cell therapies. For further review of cell surface modification strategies see Stephan and Irvine [105]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the "first-pass" accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC) therapeutic dose.
    Full-text · Article · Aug 2013 · Stem cell International
  • Source
    • "A number of diverse methods for cell surface engineering have been reported, and a comprehensive review on this topic was recently published [93]. Methods that mimic natural cell surface receptors include a technique termed "protein painting"[94] [95] [96] [97] in which proteins linked to glycoinositol phospholipids are added to cells and become incorporated into cellular plasma membranes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor-mediated endocytosis is a highly efficient mechanism for cellular uptake of membrane-impermeant ligands. Cells use this process to acquire nutrients, initiate signal transduction, promote development, regulate neurotransmission, and maintain homeostasis. Natural receptors that participate in receptor-mediated endocytosis are structurally diverse, ranging from large transmembrane proteins to small glycolipids embedded in the outer leaflet of cellular plasma membranes. Despite their vast structural differences, these receptors share common features of binding to extracellular ligands, clustering in dynamic membrane regions that pinch off to yield intracellular vesicles, and accumulation of receptor-ligand complexes in membrane-sealed endosomes. Receptors typically dissociate from ligands in endosomes and cycle back to the cell surface, whereas internalized ligands are usually delivered into lysosomes, where they are degraded, but some can escape and penetrate into the cytosol. Here, we review efforts to develop synthetic cell surface receptors, defined as nonnatural compounds, exemplified by mimics of cholesterol, that insert into plasma membranes, bind extracellular ligands including therapeutics, probes, and endogenous proteins, and engage endocytic membrane trafficking pathways. By mimicking natural mechanisms of receptor-mediated endocytosis, synthetic cell surface receptors have the potential to function as prosthetic molecules capable of seamlessly augmenting the endocytic uptake machinery of living mammalian cells.
    Full-text · Article · Feb 2012 · Advanced drug delivery reviews
Show more