Article

The changing therapeutic landscape of castration-resistant prostate cancer

Drug Development Unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey SM2 5PT, UK.
Nature Reviews Clinical Oncology (Impact Factor: 14.18). 08/2011; 8(10):597-610. DOI: 10.1038/nrclinonc.2011.117
Source: PubMed

ABSTRACT

Castration-resistant prostate cancer (CRPC) has a poor prognosis and remains a significant therapeutic challenge. Before 2010, only docetaxel-based chemotherapy improved survival in patients with CRPC compared with mitoxantrone. Our improved understanding of the underlying biology of CRPC has heralded a new era in molecular anticancer drug development, with a myriad of novel anticancer drugs for CRPC entering the clinic. These include the novel taxane cabazitaxel, the vaccine sipuleucel-T, the CYP17 inhibitor abiraterone, the novel androgen-receptor antagonist MDV-3100 and the radioisotope alpharadin. With these developments, the management of patients with CRPC is changing. In this Review, we discuss these promising therapies along with other novel agents that are demonstrating early signs of activity in CRPC. We propose a treatment pathway for patients with CRPC and consider strategies to optimize the use of these agents, including the incorporation of predictive and intermediate end point biomarkers, such as circulating tumor cells.

3 Followers
 · 
29 Reads
    • "Several new treatments have recently been approved by the US Food and Drug Administration for patients with castrationresistant prostate cancer, but only with very little survival benefit [3] [4]. It is thus an urgent need to continue searching for more effective therapeutics for this deadly disease. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to systematically explore the alkylation effect of 7-OH in silibinin and 2,3-dehydrosilibinin on the antiproliferative potency toward three prostate cancer cell lines. Eight 7-O-alkylsilibinins, eight 7-O-alkyl-2,3-dehydrosilibinins, and eight 3,7-O-dialkyl-2,3-dehydrosilibinins have been synthesized from commercially available silibinin for the in vitro cell-based evaluation. The WST-1 cell proliferation assay indicates that nineteen out of twenty-four silibinin derivatives have significantly improved antiproliferative potency when compared with silibinin. 7-O-Methylsilibinin (2) and 7-O-ethylsilibinin (3) have been identified as the most potent compounds with 98- and 123-fold enhanced potency against LNCaP human androgen-dependent prostate cancer cell line. Among 2,3-dehydrosilibinin derivatives, 7-O-methyl-2,3-dehydrosilibinin (10) and 7-O-ethyl-2,3-dehydrosilibinin (11) have been identified as the optimal compounds with the highest potency towards both androgen-dependent LNCaP and androgen-independent PC-3 prostate cancer cell lines. 7-O-Ethyl-2,3-dehydrosilibinin (11) was demonstrated to arrest PC-3 cell cycle at the G0/G1 phase and to induce PC-3 cell apoptosis. The findings in this study suggest that antiproliferative potency of silibinin and 2,3-dehydrosilibinin can be appreciably enhanced through suitable chemical modifications on the phenolic hydroxyl group at C-7 and that introduction of a chemical moiety with the potential to improve bioavailability through a linker to 7-OH in silibinin and 2,3-dehydrosilibinin would be a feasible strategy for the development of silibinin derivatives as anti-prostate cancer agents.
    No preview · Article · Dec 2015 · European Journal of Medicinal Chemistry
  • Source
    • "Initial treatment of localized tumors consists of surgery and radiation, followed by androgen deprivation therapy (ADT). However, ADT is only effective for an average of 18–24 months, and the recurrence of castration resistant prostate cancer (CRPC) dictates morbidity and mortality in patients [1]. Although the newer and more potent androgen receptor (AR) antagonists, e.g. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite its side-effects, docetaxel (DTX) remains a first-line treatment against castration resistant prostate cancer (CRPC). Therefore, strategies to increase its anti-tumor efficacy and decrease its side effects are critically needed. Targeting of the constitutive endoplasmic reticulum (ER) stress in cancer cells is being investigated as a chemosensitization approach. We hypothesized that the simultaneous induction of ER-stress and suppression of PI3K/AKT survival pathway will be a more effective approach. In a CRPC cell line, C4-2B, we observed significant (p<0.005) enhancement of DTX-induced cytotoxicity following coexposure to thapsigargin and an AKT-inhibitor. However, since these two agents are not clinically approved, we investigated whether a combination of nelfinavir (NFR) and curcumin (CUR), known to target both these metabolic pathways, can similarly increase DTX cytotoxicity in CRPC cells. Within 24 hrs post-exposure to physiologic concentrations of NFR (5 µM) and CUR (5 µM) a significantly (p<0.005) enhanced cytotoxicity was evident with low concentration of DTX (10 nM). This 3-drug combination rapidly increased apoptosis in aggressive C4-2B cells, but not in RWPE-1 cells or in primary prostate epithelial cells (PrEC). Comparative molecular studies revealed that this 3-drug combination caused a more pronounced suppression of phosphorylated-AKT and higher induction in phosphorylated-eIF2α in C4-2B cells, as compared to RWPE-1 cells. Acute exposure (3-9 hrs) to this 3-drug combination intensified ER-stress induced pro-apoptotic markers, i.e. ATF4, CHOP, and TRIB3. At much lower concentrations, chronic (3 wks) exposures to these three agents drastically reduced colony forming units (CFU) by C4-2B cells. In vivo studies using mice containing C4-2B tumor xenografts showed significant (p<0.05) enhancement of DTX's (10 mg/kg) anti-tumor efficacy following coexposure to NFR (20 mg/kg) & CUR (100 mg/kg). Immunohistochemical (IHC) analyses of tumor sections indicated decreased Ki-67 staining and increased TUNEL intensity in mice exposed to the 3-drug combination. Therefore, subverting ER-stress towards apoptosis using adjuvant therapy with NFR and CUR can chemosensitize the CRPC cells to DTX therapy.
    Full-text · Article · Aug 2014 · PLoS ONE
  • Source
    • "Metastatic, castration-resistant prostate cancer (mCRPC) remains a major challenge in uro-oncology. Despite the recent introduction of a number of novel agents for the treatment of mCRPC, the identification of novel compounds with antitumor activity is an ongoing effort [1]. Although somatic mutations in tyrosine kinase genes are uncommon, recent results provide compelling evidence for a highly altered tyrosine kinase signaling network in advanced prostate cancer [2]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Novel therapeutic options beyond hormone ablation and chemotherapy are urgently needed for patients with advanced prostate cancer. Tyrosine kinase inhibitors (TKIs) are an attractive option as advanced prostate cancers show a highly altered phosphotyrosine proteome. However, despite favorable initial clinical results, the combination of the TKI dasatinib with docetaxel did not result in improved patient survival for reasons that are not known in detail. Methods: The National Cancer Institute-Approved Oncology Drug Set II was used in a phenotypic drug screen to identify novel compounds with antineoplastic activity in prostate cancer cells. Validation experiments were carried out in vitro and in vivo. Results: We identified the TKI nilotinib as a novel compound with antineoplastic activity in hormone-refractory prostate cancer cells. However, further analyses revealed that treatment with nilotinib was associated with a significant up-regulation of the phospho-extracellular-signal-regulated kinases (ERK) survival signal. ERK blockade alone led to a significant antitumoral effect and enhanced the cytotoxicity of nilotinib when used in combination. Conclusions: Our findings underscore that TKIs, such as nilotinib, have antitumoral activity in prostate cancer cells but that survival signals, such as ERK up-regulation, may mitigate their effectiveness. ERK blockade alone or in combination with TKIs may represent a promising therapeutic strategy in advanced prostate cancer.
    Full-text · Article · Jul 2014 · Urologic Oncology
Show more