Structural and functional characterization of a single-chain peptide-MHC molecule that modulates both naive and activated CD8+ T cells

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 08/2011; 108(33):13682-7. DOI: 10.1073/pnas.1110971108
Source: PubMed


Peptide-MHC (pMHC) multimers, in addition to being tools for tracking and quantifying antigen-specific T cells, can mediate downstream signaling after T-cell receptor engagement. In the absence of costimulation, this can lead to anergy or apoptosis of cognate T cells, a property that could be exploited in the setting of autoimmune disease. Most studies with class I pMHC multimers used noncovalently linked peptides, which can allow unwanted CD8(+) T-cell activation as a result of peptide transfer to cellular MHC molecules. To circumvent this problem, and given the role of self-reactive CD8(+) T cells in the development of type 1 diabetes, we designed a single-chain pMHC complex (scK(d).IGRP) by using the class I MHC molecule H-2K(d) and a covalently linked peptide derived from islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP(206-214)), a well established autoantigen in NOD mice. X-ray diffraction studies revealed that the peptide is presented in the groove of the MHC molecule in canonical fashion, and it was also demonstrated that scK(d).IGRP tetramers bound specifically to cognate CD8(+) T cells. Tetramer binding induced death of naive T cells and in vitro- and in vivo-differentiated cytotoxic T lymphocytes, and tetramer-treated cytotoxic T lymphocytes showed a diminished IFN-γ response to antigen stimulation. Tetramer accessibility to disease-relevant T cells in vivo was also demonstrated. Our study suggests the potential of single-chain pMHC tetramers as possible therapeutic agents in autoimmune disease. Their ability to affect the fate of naive and activated CD8(+) T cells makes them a potential intervention strategy in early and late stages of disease.

Download full-text


Available from: Gayatri Mukherjee
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major histocompatibility complex (MHC) class I and MHC class II molecules present short peptides that are derived from endogenous and exogenous proteins, respectively, to cognate T-cell receptors (TCRs) on the surface of T cells. The exquisite specificity with which T cells recognize particular peptide-major-histocompatibility-complex (pMHC) combinations has permitted development of soluble pMHC multimers that bind exclusively to selected T-cell populations. Because the pathogenesis of type 1 diabetes mellitus (T1DM) is driven largely by islet-reactive T-cell activity that causes β-cell death, these reagents are useful tools for studying and, potentially, for treating this disease. When coupled to fluorophores or paramagnetic nanoparticles, pMHC multimers have been used to visualize the expansion and islet invasion of T-cell effectors during diabetogenesis. Administration of pMHC multimers to mice has been shown to modulate T-cell responses by signaling through the TCR or by delivering a toxic moiety that deletes the targeted T cell. In the nonobese diabetic mouse model of T1DM, a pMHC-I tetramer coupled to a potent ribosome-inactivating toxin caused long-term elimination of a specific diabetogenic cluster of differentiation 8+ T-cell population from the pancreatic islets and delayed the onset of diabetes. This review will provide an overview of the development and use of pMHC multimers, particularly in T1DM, and describe the therapeutic promise these reagents have as an antigen-specific means of ameliorating deleterious T-cell responses in this autoimmune disease.
    Full-text · Article · May 2012 · Journal of diabetes science and technology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Upon Ag exposure, most memory T cells undergo restimulation-induced cell death. In this article, we describe a novel synthetic agonist, an N-terminal extended decamer peptide expressed as a single-chain trimer, the amino-terminal extended peptide MHC class I single-chain trimer (AT-SCT), which preferentially promotes the growth of memory human CD8(+) T cells with minimal restimulation-induced cell death. Using CMV pp65 and melanoma gp100 Ags, we observe the in vitro numerical expansion of a clonally diverse polyfunctional population of Ag-specific CD8(+) T cells from healthy individuals and vaccinated melanoma patients, respectively. Memory CD8(+) T cells stimulated with AT-SCT presented on MHC class I/II-null cells show reduced cytokine production, slower kinetics of TCR downregulation, and decreased cell death compared with native nonamer MHC class I single-chain trimer (SCT)-activated T cells. However, both ERK phosphorylation and cell cycle kinetics are identical in AT-SCT- and SCT-activated T cells. Probing of SCT and AT-SCT peptide-MHC complexes using fluorochrome-conjugated TCR multimers suggests that nonamer- and decamer-linked peptides may be anchored differently to the HLA-A2 peptide-binding groove. Our findings demonstrate that modified peptide-MHC structures, such as AT-SCT, can be engineered as T cell agonists to promote the growth and expansion of memory human CD8(+) T cells.
    Full-text · Article · May 2012 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classical major histocompatibility complex (MHC) class I and II molecules present peptides to cognate T-cell receptors on the surface of T lymphocytes. The specificity with which T cells recognize peptide-MHC (pMHC) complexes has allowed for the utilization of recombinant, multimeric pMHC ligands for the study of minute antigen-specific T-cell populations. In type 1 diabetes (T1D), CD8+ cytotoxic T lymphocytes, in conjunction with CD4+ T helper cells, destroy the insulin-producing β cells within the pancreatic islets of Langerhans. Due to the importance of T cells in the progression of T1D, the ability to monitor and therapeutically target diabetogenic clonotypes of T cells provides a critical tool that could result in the amelioration of the disease. By administering pMHC multimers coupled to fluorophores, nanoparticles, or toxic moieties, researchers have demonstrated the ability to enumerate, track, and delete diabetogenic T-cell clonotypes that are, at least in part, responsible for insulitis; some studies even delay or prevent diabetes onset in the murine model of T1D. This paper will provide a brief overview of pMHC multimer usage in defining the role T-cell subsets play in T1D etiology and the therapeutic potential of pMHC for antigen-specific identification and modulation of diabetogenic T cells.
    Full-text · Article · May 2012 · Clinical and Developmental Immunology
Show more