New Hemostatic Dressing (FAST Dressing) Reduces Blood Loss and Improves Survival in a Grade V Liver Injury Model in Noncoagulopathic Swine

Division of Clinical and Outcomes Research, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland 21201, USA.
The Journal of trauma (Impact Factor: 2.96). 06/2011; 70(6):1408-12. DOI: 10.1097/TA.0b013e31821a1075
Source: PubMed


We performed this study to evaluate the hemostatic efficacy of the FAST Dressing in treating a grade V liver injury in noncoagulopathic swine.
Sixteen female splenectomized, noncoagulopathic swine underwent reproducible grade V liver injuries. The animals were blindly randomized to two treatment groups: (1) FAST Dressing (n = 8) or (2) IgG placebo dressing (n = 8). After 30 seconds of uncontrolled hemorrhage, dressings and manual compression were applied at 4-minute intervals. The number of dressings used, time to hemostasis, total blood loss, mean arterial pressure, blood chemistry, and total resuscitation fluid volume were monitored for 2 hours after injury.
The mean total blood loss was 412.5 mL (SD 201.3) for the FAST Dressing group compared with 2296.6 mL (SD 1076.0) in the placebo group (p < 0.001). All animals in the FAST Dressing group achieved hemostasis and survived for the duration of the experiment (2 hours) after injury, whereas none of the animals in the placebo group attained hemostasis or survived to 2 hours after injury (p < 0.001). The mean time to hemostasis was 6.6 minutes (SD 2.5). A median of five dressings (mean absolute deviation 1.0, p = 0.007) was sufficient to control hemorrhage in the FAST Dressing group.
The FAST Dressing reduced blood loss and improved survival compared with placebo in a noncoagulopathic, grade V liver injury swine model.

13 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Battlefield hemorrhage remains the primary cause of death in potentially survivable combat injuries with noncompressible hemorrhage. Fibrin dressings have great potential for reducing mortality, however are limited by cost, availability, and disease transmission. Methods: Dressings comprising a soluble dextran dressing with lyophilized salmon thrombin and fibrinogen (STF) were tested against Combat Gauze (CG) as a control in a standard swine femoral artery hemorrhage model. Ten female swine were used in each arm of the study. Results: Survival, blood loss, and time to hemostasis were similar between the two dressings. Two of the CGtreated animals that survived exsanguinated during the simulated walking maneuver. Three CG-treated animals formed a clot within the wound, but the clot did not adhere to the femoral artery injury. All ten of the STFtreated animals formed a clot in the wound that adhered and sealed the arterial injury site, even in three animals that did not survive. None of the STF-treated animals bled following the simulated walking maneuver. Three of five STF-treated animals reestablished blood flow distal to the injury as demonstrated by angiography. Conclusions: The STF dressing is as efficacious as CG in treating hemorrhage in this model of a lethal injury. Further, the STF dressing formed a fibrin sealant over the injury, whereas CG achieved hemostasis by occlusive compression of the artery. The sealant property of the STF dressing allowed reestablishment of antegrade blood flow into the distal limb, demonstrating that this dressing has the potential of limb salvage in addition to control of life-threatening hemorrhage.
    Preview · Article · Jan 2012 · Journal of special operations medicine : a peer reviewed journal for SOF medical professionals
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To compare local injection of hemostatic agents and radiofrequency (RF)-assisted hemostasis in the management of bleeding from the portal vein with varying diameters and blood flow velocities. Sixteen Bama pigs were used. Laparotomy was performed to expose the liver and inner diameters and blood flow velocities of the pre-injured portal vein in the hepatic segments and subsegments were measured. Vascular injuries in the portal vein were produced (4 in each pig). The pigs were randomly divided into two groups and local injection of hemostatic agents was performed in one group and RF-assisted hemostasis in the other, both techniques monitored by contrast-enhanced ultrasonography (CEUS). Time to hemostasis was measured, and the extent of liver injury was determined 2 h after treatment. In the local injection group, the rates of successful hemostasis were 100, 88.9, and 50% with portal veins with inner diameters of < 1 mm, 1-2 mm, and 2-3 mm, respectively, and the maximum time to achieve hemostasis was 24.0 ± 7.2 s. Hemostasis was not successful when the diameter was > 3 mm. In the RF-assisted group, hemostasis was successfully at all sites regardless of vessel diameter; however, the maximum time to achieve hemostasis was 156.8 ± 31.2 s. Injury to surrounding tissue was significantly greater in the RF-assisted group. Both methods can achieve hemostasis with small diameter portal vein injuries; however, RF-assisted hemostasis is necessary for larger vessels, though it is associated with greater damage to surrounding tissue.
    Preview · Article · Mar 2012 · Annals of hepatology: official journal of the Mexican Association of Hepatology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Hemorrhage within an intact abdominal cavity remains a leading cause of preventable death on the battlefield. Despite this need, there is no existing closed-cavity animal model to assess new hemostatic agents for the preoperative control of intra-abdominal hemorrhage. Methods: We developed a novel, lethal liver injury model in non-coagulopathic swine by strategic placement of two wire loops in the medial liver lobes including the hepatic and portal veins. Distraction resulted in grade V liver laceration with hepato-portal injury, massive bleeding, and severe hypotension. Crystalloid resuscitation was started once mean arterial pressure (MAP) fell below 65 mm Hg. Monitoring continued for up to 180 min. Results: We demonstrated 90% lethality (9/10) in swine receiving injury and fluid resuscitation, with a mean survival time of 43 min. Previous efforts in our laboratory to develop a consistently lethal swine model of abdominal solid organs, including preemptive anticoagulation, a two-hit injury with controlled hemorrhage prior to liver trauma, and the injury described above without resuscitation, consistently failed to result in lethal injury. Conclusion: This model can be used to screen other interventions for pre hospital control of noncompressible.
    No preview · Article · Aug 2012 · Journal of Surgical Research
Show more