Identification and validation of mouse sperm proteins correlated with epididymal maturation

Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6080, USA.
Proteomics (Impact Factor: 3.81). 10/2011; 11(20):4047-62. DOI: 10.1002/pmic.201100075
Source: PubMed


Sperm need to mature in the epididymis to become capable of fertilization. To understand the molecular mechanisms of mouse sperm maturation, we conducted a proteomic analysis using saturation dye labeling to identify proteins of caput and cauda epididymal sperm that exhibited differences in amounts or positions on two-dimensional gels. Of eight caput epididymal sperm-differential proteins, three were molecular chaperones and three were structural proteins. Of nine cauda epididymal sperm-differential proteins, six were enzymes of energy metabolism. To validate these proteins as markers of epididymal maturation, immunoblotting and immunofluorescence analyses were performed. During epididymal transit, heat shock protein 2 was eliminated with the cytoplasmic droplet and smooth muscle γ-actin exhibited reduced fluorescence from the anterior acrosome while the signal intensity of aldolase A increased, especially in the principal piece. Besides these changes, we observed protein spots, such as glutathione S-transferase mu 5 and the E2 component of pyruvate dehydrogenase complex, shifting to more basic isoelectric points, suggesting post-translational changes such dephosphorylation occur during epididymal maturation. We conclude that most caput epididymal sperm-differential proteins contribute to the functional modification of sperm structures and that many cauda epididymal sperm-differential proteins are involved in ATP production that promotes sperm functions such as motility.

Download full-text


Available from: George L Gerton
  • Source
    • "The basic techniques used in proteomics research largely focus on illuminating the structure and conformation, purifying, and measuring the concentration of sperm proteins. The proteomic techniques that are used for the structural analysis of sperm proteins include MS and electrophoresis [26, 27], nuclear magnetic resonance spectroscopy [29, 30], and X-ray crystallography [31, 32]. However, liquid chromatography (LC) [33, 34] and the recently developed microfluidic separation technique [35, 36] are widely used for the purification of proteins from spermatozoa or other samples. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Spermatozoa are highly specialized cells that can be easily obtained and purified. Mature spermatozoa are transcriptionally and translationally inactive and incapable of protein synthesis. In addition, spermatozoa contain relatively higher amounts of membrane proteins compared to other cells; therefore, they are very suitable for proteomic studies. Recently, the application of proteomic approaches such as the two-dimensional polyacrylamide gel electrophoresis, mass spectrometry, and differential in-gel electrophoresis has identified several sperm-specific proteins. These findings have provided a further understanding of protein functions involved in different sperm processes as well as of the differentiation of normal state from an abnormal one. In addition, studies on the sperm proteome have demonstrated the importance of spermatozoal posttranslational modifications and their ability to induce physiological changes responsible for fertilization. Large-scale proteomic studies to identify hundreds to thousands of sperm proteins will ultimately result in the development of novel biomarkers that may help to detect fertility, the state of complete contraception, and beyond. Eventually, these protein biomarkers will allow for a better diagnosis of sperm dysfunctions and aid in drug development. This paper reviews the recent scientific publications available from the PubMed database to address sperm proteomics and its potential application to characterize male fertility and contraception.
    Full-text · Article · Dec 2013 · International Journal of Endocrinology
  • Source
    • "Although some information is available concerning TPI1 in sperm from a limited number of species, an extensive analysis of the isoforms present and the localization of the protein in sperm have not been published. We previously reported that mouse TPI1 was present in the sperm flagellar accessory structures and was identified as a cauda epididymal sperm-differential protein by proteomic analysis (Cao et al., 2006; Ijiri et al., 2011). Here, we have shown that TPI1 is restricted to the principal piece of the sperm flagellum, and is tethered to the fibrous sheath. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Triosephosphate isomerase 1 (TPI1) is a member of the glycolytic pathway, which is a critical source of energy for motility in mouse sperm. By immunoblotting, we detected two male, germ line-specific TPI1 bands (Mr 33,400 and 30,800) as well as the somatic - type band (Mr 27,700). Although all three bands were observed in spermatogenic cells, somatic - type TPI1 disappeared from sperm during epididymal maturation. In vitro dephosphorylation analysis suggested that the two male, germ line-specific TPI1 bands were not the result of phosphorylation of the 27,700 Mr TPI1 band. The Mr 33,400, 30,800, and 27,700 Mr TPI1 bands corresponded to the respective sizes of the proteins predicted to use the first, second, and third possible initiation codons of the Tpi1 cDNA. We performed immunofluorescence on epididymal sperm and determined that TPI1 specifically localized in the principal piece. The antibody staining was stronger in cauda epididymal sperm than in caput epididymal sperm, a finding consistent with the identification of TPI1 as a cauda epididymal sperm-enriched protein. Immunofluorescence with sodium dodecyl sulfate (SDS)-insoluble flagellar accessory structures showed a strong TPI1 signal only in the principal piece, indicating that TPI1 is a component of the fibrous sheath. Northern hybridization detected longer Tpi1 transcripts (1.56 kb) in mouse testis, whereas somatic tissues had shorter transcripts (1.32 kb). As there is only one triosephosphate isomerase gene in the mouse genome, we conclude that the three variants we see in sperm result from the use of alternative translation start codons in spermatogenic cells. Mol. Reprod. Dev. © 2013 Wiley Periodicals, Inc.
    Full-text · Article · Oct 2013 · Molecular Reproduction and Development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A critical step during fertilization is the sperm acrosome reaction in which the acrosome releases its contents allowing the spermatozoa to penetrate the egg investments. The sperm acrosomal contents are composed of both soluble material and an insoluble material called the acrosomal matrix (AM). The AM is thought to provide a stable structure from which associated proteins are differentially released during fertilization. Because of its important role during fertilization, efforts have been put toward isolating the AM for biochemical study and to date AM have been isolated from hamster, guinea pig, and bull spermatozoa. However, attempts to isolate AM from mouse spermatozoa, the species in which fertilization is well-studied, have been unsuccessful possibly because of the small size of the mouse sperm acrosome and/or its fusiform shape. Herein we describe a procedure for the isolation of the AM from caput and cauda mouse epididymal spermatozoa. We further carried out a proteomic analysis of the isolated AM from both sperm populations and identified 501 new proteins previously not detected by proteomics in mouse spermatozoa. A comparison of the AM proteome from caput and cauda spermatozoa showed that the AM undergoes maturational changes during epididymal transit similar to other sperm domains. Together, our studies suggest the AM to be a dynamic and functional structure carrying out a variety of biological processes as implied by the presence of a diverse group of proteins including proteases, chaperones, hydrolases, transporters, enzyme modulators, transferases, cytoskeletal proteins, and others.
    Full-text · Article · Jun 2012 · Molecular & Cellular Proteomics
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.