Article

Novel formulations enhance the thermal stability of live-attenuated flavivirus vaccines

Inviragen Inc., Fort Collins, Colorado 80525,United States.
Vaccine (Impact Factor: 3.62). 07/2011; 29(43):7456-62. DOI: 10.1016/j.vaccine.2011.07.054
Source: PubMed

ABSTRACT

Thermal stability is important for the manufacture, distribution and administration of vaccines, especially in tropical developing countries, where particularly adverse field conditions exist. Current live-attenuated flavivirus vaccines exhibit relatively poor liquid stability in clinical settings, and clinicians are instructed to discard the yellow fever vaccine 1h after reconstitution. We have identified novel combinations of excipients that greatly enhance the thermal stability of live-attenuated DEN-2 PDK-53-based flavivirus vaccine candidates. Liquid formulations comprising a sugar, albumin and a pluronic polymer minimized the loss of flavivirus infectious titer to less than 0.5 log(10)pfu after storage for at least 8h at 37°C, 7 days at room temperature or at least 11 weeks at 4°C. Additionally, these formulations prevented reduction of viral infectivity after two freeze-thaw cycles of virus. Formulated candidate vaccines were readily lyophilized and reconstituted with minimal loss of viral titers. In mice, the formulations were safe and did not hinder the ability of the vaccine virus to generate a potent, protective immune response. These formulations provided significantly greater liquid-phase stability than has been reported previously for other flavivirus vaccine formulations. The enhanced thermal stability provided by the formulations described here will facilitate the effective distribution of flavivirus vaccines worldwide.

Download full-text

Full-text

Available from: Jill A Livengood
  • Source
    • "Nonetheless, the vaccines require storage and shipment at 2–8 • C. Upon reconstitution, the vaccines rapidly lose potency even when stored at 2–8 • C. To improve the thermal stability of TDV-2-based chimeric attenuated vaccine viruses, we screened and identified combinations of excipients that significantly enhance the thermal stability of these vaccines. A combination of three excipients, F-127 (a polyoxyethylene–polyoxypropylene block copolymer) trehalose and albumin, synergistically improved the thermal stability of these vaccine viruses [37]. These excipients have been incorporated into all TDV formulations that have been preclinically and clinically tested as described below. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24-67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8(+) T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.
    Preview · Article · Nov 2015 · Vaccine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Formulations of chimeric dengue vaccine (DENVax) viruses containing the pre-membrane (prM) and envelope (E) genes of serotypes 1-4 expressed in the context of the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity and efficacy in interferon receptor knock-out mice (AG129). Monovalent formulations were safe and elicited robust neutralizing antibody responses to the homologous virus and only limited cross-reactivity to other serotypes. A single dose of monovalent DENVax-1, -2, or -3 vaccine provided eighty or greater percent protection against both wild-type (wt) DENV-1 (Mochizuki strain) and DENV-2 (New Guinea C strain) challenge viruses. A single dose of monovalent DENVax-4 also provided complete protection against wt DENV-1 challenge and significantly increased the survival times after challenge with wt DENV-2. In studies using tetravalent mixtures, DENVax ratios were identified that: (i) caused limited viremia, (ii) induced serotype-specific neutralizing antibodies to all four DENV serotypes with different hierarchies, and (iii) conferred full protection against clinical signs of disease following challenge with either wt DENV-1 or DENV-2 viruses. Overall, these data highlight the immunogenic profile of DENVax, a novel candidate tetravalent dengue vaccine and the advantage of sharing a common attenuated genomic backbone among the DENVax monovalent vaccines that confer protection against homologous or heterologous virus challenge.
    No preview · Article · Dec 2011 · Vaccine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Outbreaks of flaviviruses such as dengue (DV), yellow fever (YFV), Japanese encephalitis (JEV), tick-borne encephalitis (TBEV) and West Nile (WNV) affect numerous countries around the world. The fast spread of these viruses is the result of increases in the human population, rapid urbanisation and globalisation. While vector control is an important preventive measure against vector-borne diseases, it has failed to prevent the spread of these diseases, particularly in developing countries where the implementation of control measures is intermittent. As antiviral drugs against flaviviruses are not yet available, vaccination remains the most important tool for prevention. Although human vaccines for YFV, TBEV and JEV are available, on-going vaccination efforts are insufficient to prevent infection. No vaccines against DENV and WNV are available. Research advances have provided important tools for flavivirus vaccine development, such as the use of plants as a recombinant antigen production platform. This review summarises the research efforts in this area and highlights why a plant system is considered a necessary alternative production platform for high-tech subunit vaccines.
    Full-text · Article · Mar 2012 · Biotechnology advances
Show more