Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

During their evolution, animals have developed a set of cysteine-rich peptides capable of binding various extracellular sites of voltage-gated sodium channels (VGSC). Sea anemone toxins that target VGSCs delay their inactivation process, but little is known about their selectivities. Here we report the investigation of three native type 1 toxins (CGTX-II, δ-AITX-Bcg1a and δ-AITX-Bcg1b) purified from the venom of Bunodosoma cangicum. Both δ-AITX-Bcg1a and δ-AITX-Bcg1b toxins were fully sequenced. The three peptides were evaluated by patch-clamp technique among Nav1.1-1.7 isoforms expressed in mammalian cell lines, and their preferential targets are Na(v)1.5>1.6>1.1. We also evaluated the role of some supposedly critical residues in the toxins which would interact with the channels, and observed that some substitutions are not critical as expected. In addition, CGTX-II and δ-AITX-Bcg1a evoke different shifts in activation/inactivation Boltzmann curves in Nav1.1 and 1.6. Moreover, our results suggest that the interaction region between toxins and VGSCs is not restricted to the supposed site 3 (S3-S4 linker of domain IV), and this may be a consequence of distinct surface of contact of each peptide vs. targeted channel. Our data suggest that the contact surfaces of each peptide may be related to their surface charges, as CGTX-II is more positive than δ-AITX-Bcg1a and δ-AITX-Bcg1b.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Currently, many type 1 neurotoxins (for example, ATX-II, ATF-II, Bc-III, Cp1, CgNa, CGTX-II, Bcg1a, and Bcg1b) have electrophysiologically been characterized in terms of their modulating activity and selectivity towards the mammals and insects sodium channels of various subtypes, Na V 1.1-Na V 1.9 [59,62,77,[81][82][83][84]90,92,94,102,105,110,120,123,150,[153][154][155][156]. So far, not more than two or three NaTxs of structure type 2 have been investigated, using this approach. ...
... The neurotoxins ATX-II, ATF-II, CgNa, BcIII, and CGTX-II have been characterized most completely in terms of selectivity towards various isoforms of Na V in mammals (Table 3) [193,194]. Table 3. Effects of neurotoxins BcIII, ATF-II, ATX-II [59], CGTX-II, δ-AITX-Bcg1a, δ-AITX-Bcg1b [155], CgNa [156], Nv1, Nv5, Nv6 [17], BgII, BgIII [81,105], RTX-III [29,168], δ-SHTX-Hcr1f, and RTX-VI [168] on the Na + currents of mammals Na V 1.1-Na V 1.8, insect BgNa V 1, and arachnid VdNa V 1 channels expressed in Xenopus laevis. ...
... Table 4. The half-maximal effective concentration (EC 50 nM) of Heteractis neurotoxins, δ-SHTX-Hcr1f, RTX-III, RTX-VI [168], and ones of type 1, ATX-II, AFT-II, BcIII, BgII, BgIII δ-AITX-Bcg1a, CGTX-II [17,59,105,155,156], under the action on sodium channel subtypes, Na V 1.1-Na V 1.7 and BgNa V 1. Thus, Heteractis neurotoxins δ-SHTX-Hcr1f, RTX-III, and RTX-VI, effectively potentiate insect and arachnid channels (with high EC 50 values) and less effectively potentiate mammalian channels (with low EC 50 values). ...
Article
Full-text available
Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches. They have widely been carried out over the past three decades, in particular, in establishing different NaV subtypes functional properties and a specific role in various pathologies. Therefore, a large number of publications are currently dedicated to the search and study of the structure-functional relationships of new sea anemone natural neurotoxins–potential pharmacologically active compounds that specifically interact with various subtypes of voltage gated sodium channels as drug discovery targets. This review presents and summarizes some updated data on the structure-functional relationships of known sea anemone neurotoxins belonging to four structural types. The review also emphasizes the study of type 2 neurotoxins, produced by the tropical sea anemone Heteractis crispa, five structurally homologous and one unique double-stranded peptide that, due to the absence of a functionally significant Arg14 residue, loses toxicity but retains the ability to modulate several VGSCs subtypes.
... Some-such as AFT-II from Anthopleura fuscoviridis, ApC from Anthopleura elegantissima, Bc-III from Bunodosoma caissarum, CGTX-II from Bunodosoma cangicum, CgNa from Condylactis gigantea, or RTX-III from Heteractis crispa-exhibit selectivity for specific Na V isoforms. 64,96,[107][108][109]120,142 In addition, phospholipase-A 2 is found in venoms across all cnidarian classes, as are pore-forming toxins. 92 However, the contribution of these toxins to pain and nociception has not been explored systematically, in part because many jellyfish venoms in particular suffer from poor stability and venom extraction is, compared with other venomous animals, somewhat more difficult. ...
... Na v channels are responsible for nerve impulse generation, while GABA A Rs are important effector molecules of GABA, the main inhibitory neurotransmitter in the nervous system. Until now, most neurotoxins isolated from sea anemones (e.g., ShK, BgK, CgNa, and CGTX II) affect K v or Na v channels 13,[53][54][55][56][57][58][59] . The peptide neurotoxins that act on Na v channels are widely studied and have been classified into four types 6 . ...
Article
Full-text available
Toxin production in nematocysts by Cnidaria phylum represents an important source of bioactive compounds. Using electrophysiology and, heterologous expression of mammalian ion channels in the Xenopus oocyte membrane, we identified two main effects produced by the sea anemone Bartholomea annulata venom. Nematocysts isolation and controlled discharge of their content, revealed that venom had potent effects on both voltage-dependent Na+ (Nav) channels and GABA type A channel receptors (GABAAR), two essential proteins in central nervous system signaling. Unlike many others sea anemone toxins, which slow the inactivation rate of Nav channels, B. annulata venom potently inhibited the neuronal action potential and the Na+ currents generated by distinct Nav channels opening, including human TTX-sensitive (hNav1.6) and TTX-insensitive Nav channels (hNav1.5). A second effect of B. annulata venom was an agonistic action on GABAAR that activated distinct receptors conformed by either α1β2γ2, α3β2γ1 or, ρ1 homomeric receptors. Since GABA was detected in venom samples by ELISA assay at low nanomolar range, it was excluded that GABA from nematocysts directly activated the GABAARs. This revealed that substances in B. annulata nematocysts generated at least two potent and novel effects on mammalian ion channels that are crucial for nervous system signaling.
... Na v channels are responsible for nerve impulse generation, while GABA A Rs are important effector molecules of GABA, the main inhibitory neurotransmitter in the nervous system. Until now, most neurotoxins isolated from sea anemones (e.g., ShK, BgK, CgNa, and CGTX II) affect K v or Na v channels 13,[53][54][55][56][57][58][59] . The peptide neurotoxins that act on Na v channels are widely studied and have been classified into four types 6 . ...
... ATX-II, AP-B, BgII and BgIII) (Bosmans and Tytgat, 2007). Up to now, few studies have investigated the effects exerted by SaNaTX on various Na v channel isoforms (Oliveira et al., 2004;Schiavon et al., 2006;Billen et al., 2010;Zaharenko et al., 2012). d-AITX-Avd1c (ATX-II from Anemonia viridis) was found early much more powerful on insect Na v channels as those of mammals (Warmke et al., 1997;Bosmans and Tytgat, 2007) for which its selectivity is Na v 1.1e1.2 ...
... Da) isolated from Bunodosoma granulifera secretion [33]. Likewise, δ-AITX-Cgg1a (CgNa -5043 Da) from Condylactis gigantea body extracts [34,35], δ-AITX-Bcg1b (CGTX-II -4958.1 Da) from Bunodosoma cangicum venom [36,37] and δ-AITX-Bcs1a (BcIII -4976.2 Da) toxin purified from Bunodosoma caissarum [11] are some examples of sodium channel modulators from sea anemones. ...
Article
Full-text available
Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one pore-forming α subunit, which may be associated with either one or two β subunits [179]. α-Subunits consist of four homologous domains (I-IV), each containing six transmembrane segments (S1-S6) and a pore-forming loop. The positively charged fourth transmembrane segment (S4) acts as a voltage sensor and is involved in channel gating. The crystal structure of the bacterial NavAb channel has revealed a number of novel structural features compared to earlier potassium channel structures including a short selectivity filter with ion selectivity determined by interactions with glutamate side chains [278]. Interestingly, the pore region is penetrated by fatty acyl chains that extend into the central cavity which may allow the entry of small, hydrophobic pore-blocking drugs [278]. Auxiliary β1, β2, β3 and β4 subunits consist of a large extracellular N-terminal domain, a single transmembrane segment and a shorter cytoplasmic domain.The nomenclature for sodium channels was proposed by Goldin et al., (2000) [146] and approved by the NC-IUPHAR Subcommittee on sodium channels (Catterall et al., 2005, [53]).
Chapter
Pain management is a serious worldwide problem that affects the physical and mental health of all affected humans. As an alternative to opioids, pharmaceutical companies are seeking other sources of potential analgesics that have fewer adverse side effects. Animal venoms are a natural cocktail of a complex mixture of salts, peptides, and proteins. Most animals that produce venoms release them for the purpose of prey capture and/or defense against other vertebrates. Over the last 30 years, many venom-derived peptides have been shown to be active against numerous voltage-gated ion channels in the mammalian somatosensory nervous system. Voltage-gated ion channels and in particular sodium, potassium, and calcium channels are fundamental to the transmission of all somatosensory information from the periphery to the central nervous system. This information can be chemical, mechanical, or thermal sensation that can result from touch to a more painful sensation of tissue injury. These voltage-gated ion channels open or close in response to changes in membrane potential to permit ion movement across the cell membrane. In this chapter, we screened the scientific literature characterizing venom-derived peptides that target voltage-gated sodium and calcium channels and exhibit analgesic properties. Depending on peptide activity, these can either inhibit voltage-gated sodium or calcium channels completely by binding to the pore of the channel or modulate the activity by binding to other regions such as the voltage sensor of the channel.
Article
Full-text available
Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one pore-forming α subunit, which may be associated with either one or two β subunits [177]. α-Subunits consist of four homologous domains (I-IV), each containing six transmembrane segments (S1-S6) and a pore-forming loop. The positively charged fourth transmembrane segment (S4) acts as a voltage sensor and is involved in channel gating. The crystal structure of the bacterial NavAb channel has revealed a number of novel structural features compared to earlier potassium channel structures including a short selectivity filter with ion selectivity determined by interactions with glutamate side chains [274]. Interestingly, the pore region is penetrated by fatty acyl chains that extend into the central cavity which may allow the entry of small, hydrophobic pore-blocking drugs [274]. Auxiliary β1, β2, β3 and β4 subunits consist of a large extracellular N-terminal domain, a single transmembrane segment and a shorter cytoplasmic domain.The nomenclature for sodium channels was proposed by Goldin et al., (2000) [144] and approved by the NC-IUPHAR Subcommittee on sodium channels (Catterall et al., 2005, [52]).
Article
Covering: Up to 2020 Ion channels are a vast super-family of membrane proteins that play critical physiological roles in excitable and non-excitable cells. Their biomedical importance makes them valuable and attractive drug targets for neurological, cardiovascular, gastrointestinal and metabolic diseases, and for cancer therapy and immune modulation. Current therapeutics target only a minor subset of ion channels, leaving a large unexploited space within the ion channel field. Natural products harnessed from the almost unlimited and diverse universe of compounds within the bioenvironment have been used to modulate channels for decades. In this review we highlight the impact made by natural products on ion channel pharmacology, specifically on K⁺, NaV and CaV channels, and use case studies to describe the development of ion channel-modulating drugs from natural sources for the treatment of pain, heart disease and autoimmune diseases.
Article
Scorpion venoms are highly complex polypeptides with a wide spectrum of bioactivities. A long chain peptide with eight cysteine residues and four disulfide bonds isolated from the venom of the Iranian scorpion Androctonus crassicauda, a dangerously venomous species belongs to the Buthidae family. Toxin was purified using size exclusion and reverse phase chromatography and was characterized by molecular weight determination and amino acid sequence. The primary structure analysis shows that AnCra1 is a long peptide with 64 amino acid residues and 7255.23 Da. as molecular weight. This toxic peptide, causing severe paralysis and leading to dead. It shows highest homology with voltage-gated sodium channel alpha toxins isolated from Middle-East and North-Africa scorpions. Phylogenetic relationship of AnCra1 and other ion channel toxins from Buthidae family suggested that, separation between these families of scorpions caused by the geographical conditions led to evolutionary alterations in these venoms polypeptide sequences. Homology modeling and three-dimensional structure of AnCra1 indicated that binding residues on exposed part of the peptide have high affinity for receptor residues in Na+V ion channel, site-3. The contact surfaces characteristics and charges may be eventuate to interaction between toxin peptide and targeted channel. Molecular homology between AnCra1 with structure of Na+V neurotoxic peptides illustrated that, AnCra1 can act as novel functional putative Alpha-mammal voltage-gated sodium channel toxin.
Article
Full-text available
Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one pore-forming α subunit, which may be associated with either one or two β subunits [176]. α-Subunits consist of four homologous domains (I–IV), each containing six transmembrane segments (S1–S6) and a pore-forming loop. The positively charged fourth transmembrane segment (S4) acts as a voltage sensor and is involved in channel gating. The crystal structure of the bacterial NavAb channel has revealed a number of novel structural features compared to earlier potassium channel structures including a short selectivity filter with ion selectivity determined by interactions with glutamate side chains [268]. Interestingly, the pore region is penetrated by fatty acyl chains that extend into the central cavity which may allow the entry of small, hydrophobic pore-blocking drugs [268]. Auxiliary β1, β2, β3 and β4 subunits consist of a large extracellular N-terminal domain, a single transmembrane segment and a shorter cytoplasmic domain.The nomenclature for sodium channels was proposed by Goldin et al., (2000) [143] and approved by the NC-IUPHAR Subcommittee on sodium channels (Catterall et al., 2005, [51]).
Article
Full-text available
Ion channels play a key role in our body to regulate homeostasis and conduct electrical signals. With the help of advances in structural biology, as well as the discovery of numerous channel modulators derived from animal toxins, we are moving toward a better understanding of the function and mode of action of ion channels. Their ubiquitous tissue distribution and the physiological relevancies of their opening and closing suggest that cation channels are particularly attractive drug targets, and years of research has revealed a variety of natural toxins that bind to these channels and alter their function. In this review, we provide an introductory overview of the major cation ion channels: potassium channels, sodium channels and calcium channels, describe their venom-derived peptide modulators, and how these peptides provide great research and therapeutic value to both basic and translational medical research.
Article
Full-text available
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds.
Chapter
Venomous animals including cone snails, spiders, scorpions, anemones, and snakes have evolved a myriad of components in their venoms that target the opening and/or closing of voltage-gated sodium channels to cause devastating effects on the neuromuscular systems of predators and prey. These venom peptides, through design and serendipity, have not only contributed significantly to our understanding of sodium channel pharmacology and structure, but they also represent some of the most phyla- and isoform-selective molecules that are useful as valuable tool compounds and drug leads. Here, we review our understanding of the basic function of mammalian voltage-gated sodium channel isoforms as well as the pharmacology of venom peptides that act at these key transmembrane proteins.
Article
Full-text available
At present, the discovery of drugs based on animal venoms undergoes its rebirth: pharmaceutical companies start to accept gradually the potential of animal venoms as combinatorial libraries of biologically active compounds. Sea anemones are a group of animals that produce the most structurally versatile polypeptide venom components, which distinguish them from the majority of other venomous animals. The known polypeptide toxins from the sea anemone venoms are considered in this review primarily in terms of their classification according to structural features. The most outstanding functional features of polypeptides within each class were analyzed.
Article
Sea anemone toxins are predominantly peptide and proteins that act mainly on sodium and potassium channels, as well as in a variety of target cells causing lysis. Over recent years, the number of sea anemone peptide toxins as well as cytolytic pore-forming proteins and phospholipase A(2) sequences submitted to databases has been rapidly increasing due to the developments in DNA sequencing technology and proteomic approaches. However, the lack of a systematic nomenclature has resulted in multiple names being assigned to the same toxins, toxins from unrelated species being designated by the same name, and ambiguous name designations. Therefore, in this work we propose a systematic nomenclature in which we adopted specific criteria, based on order of discovery and phylogenetic analysis, in order to avoid redundant sea anemone toxin names. Implementation of the nomenclature proposed here not only allowed us to rename the already published 191 anemone toxins without ambiguities, but it can be used to unambiguously name newly discovered toxins whether or not they are related to previously published sea anemone sequences. In the new nomenclature each toxin name contains information about the toxin's biological activity, origin and relationship to known isoforms. Ongoing increases in the speed of DNA sequencing will raise significantly the number of sea anemone toxin sequences in the literature. This will represent a constant challenge in their clear identification and logical classification, which could be solved using the proposed nomenclature.
Article
Full-text available
We have studied the effects of the proteolytic enzyme Pronase on the membrane currents of voltage-clamped squid axons. Internal perfusion of the axons with Pronase rather selectively destroys inactivation of the Na conductance (g(Na)). At the level of a single channel, Pronase probably acts in an all-or-none manner: each channel inactivates normally until its inactivation gate is destroyed, and then it no longer inactivates. Pronase reduces g(Na), possibly by destroying some of the channels, but after removal of its inactivation gate a Na channel seems no longer vulnerable to Pronase. The turn-off kinetics and the voltage dependence of the Na channel activation gates are not affected by Pronase, and it is probable that the enzyme does not affect these gates in any way. Neither the K channels nor their activation gates are affected in a specific way by Pronase. Tetrodotoxin does not protect the inactivation gates from Pronase, nor does maintained inactivation of the Na channels during exposure to Pronase. Our results suggest that the inactivation gate is a readily accessible protein attached to the inner end of each Na channel. It is shown clearly that activation and inactivation of Na channels are separable processes, and that Na channels are distinct from K channels.
Article
Full-text available
Chemical modifications of sea anemone toxin II from Anemonia sulcata have been used to study the residues involved in its toxic action on crabs and mice and in its binding properties to the Na+ channel of rat brain synaptosomes. Guanidination of th epsilon-amino groups of lysines 35, 36, and 46 with O-methylisourea hydrogen sulfate did not change the net charge of the toxin molecule and had no effect upon its toxic and binding properties. Either acetylation or fluorescamine treatment of the toxin that destroyed the positive charges of the three epsilon-amino groups and of the alpha-amino function of Gly produced an almost complete loss of toxicity and a considerable decrease in the binding activity. Iodination of the toxin on His induced practically no loss of toxic or binding properties. Carbethoxylation of both histidines 32 and 37 with diethyl pyrocarbonate provoked an important decrease of both the toxicity and the binding activity. Modifications of the guanidine side chain of Arg with 1,2-cyclohexanedione fully destroyed both toxicity and binding of the toxin to the Na+ channel. Modification of the carboxylate functions of Asp, Asp, and of the COOH-terminal Gln with glycine ethyl ester in the presence of a soluble carbodiimide completely abolished the toxicity but left the affinity for the sea anemone toxin receptor unchanged. The antagonist character of this carboxylate-modified derivative was further confirmed by electrophysiological and Na+ flux experiments. The theoretical and practical significance of these results are discussed.
Article
Full-text available
Sea anemone toxins are potentially important tools for understanding the pharmacology of voltage-sensitive sodium channels. We have previously described a bacterial expression system capable of producing large amounts of one such toxin, anthopleurin B (ApB), which delays channel repolarization (Gallagher, M. J., and Blumenthal K. M. (1992) J. Biol. Chem. 267, 13958-13963). It has been suggested that cationic residues are a major determinant of anemone toxin binding. In this paper, we describe characterization of three mutants at each of two unique cationic sites of ApB, Arg-12 and Lys-49. The activities of all mutants on cardiac and neuronal sodium channels have been compared with that of wild-type ApB. Mutation of Lys-49 has relatively minor effects on toxicity, whereas the mutant R12A, but not R12S or R12K, is severely impaired. These results indicate that cationic residues per se are not absolutely required at either position, but that polar side chains at position 12 contribute significantly to binding affinity. Furthermore, Arg-12 appears to be involved in the toxin's ability to discriminate between neuronal and cardiac sodium channels.
Article
Full-text available
Polypeptide neurotoxins from sea anemones have been useful biological probes for sodium channel function. Cationic residues, specifically Arg-14, which is conserved in essentially all known sea anemone toxins, have been generally thought to be important determinants of their binding affinity and/or efficacy. In the present study, we have constructed site-directed mutants of the Anthopleura xanthogrammica toxin anthopleurin B (ApB) at Arg-14 and Lys-48 to characterize the roles played by these cationic residues in the biological activity of the toxin. Using a bacterial expression system developed in this laboratory, we have produced recombinant proteins having three substitutions at each of these positions. The proteins produced have been purified to homogeneity and have structures and conformational stabilities identical to wild-type ApB. We have assayed the mutants by determining their ability to enhance the veratridine-dependent uptake of sodium by both N1E-115 neuroblastoma cells and RT4-B cells, which express the cardiac/denervated skeletal muscle sodium channel. All mutants showed activities only slightly reduced from that of wild-type ApB, with the greatest reductions (4- and 6-fold) being observed for the mutants R14A and K48A, respectively. We conclude that contrary to results from chemical modification studies, Arg-14 is not essential for the biological activity of the toxin. Our data also indicate that Lys-48 plays a small but discernible role in the toxin-receptor interaction.
Article
Full-text available
Anthopleurin B is a potent anemone toxin that binds with nanomolar affinity to the cardiac and neuronal isoforms of the voltage-gated sodium channel. A cationic cluster that includes Arg-12, Arg-14 and Lys-49 has been shown previously to be important in this interaction. In this study, we have used site-directed mutagenesis to determine the contribution to activity of two aliphatic residues, Leu-18 and Ile-43, that have previously been experimentally inaccessible. Leu-18, a residue proximal to the cationic cluster, plays a critical role in defining the high affinity of the toxin. In ion flux studies, this is exemplified by the several hundredfold loss in affinity (231-672-fold) observed for both L18A and L18V toxins on either isoform of the sodium channel. When analyzed electrophysiologically, L18A, the most severely compromised mutant, also displays a substantial loss in affinity (34-fold and 328-fold) for the neuronal and cardiac isoforms. This difference in affinities may reflect an increased preference of the L18A mutant for the closed state of the neuronal channel. In contrast, Ile-43, a residue distal to the cationic cluster, plays at most a very modest role in affinity toward both isoforms of the sodium channel. Only conservative substitutions are tolerated at this position, implying that it may contribute to an important structural component. Our results indicate that Leu-18 is the most significant single contributor to the high affinity of Anthopleurin B identified to date. These results have extended the binding site beyond the cationic cluster to include Leu-18 and broadened our emphasis from the basic residues to include the crucial role of hydrophobic residues in toxin-receptor interactions.
Article
Full-text available
alpha-Scorpion toxins and sea anemone toxins bind to a common extracellular site on the Na+ channel and inhibit fast inactivation. Basic amino acids of the toxins and domains I and IV of the Na+ channel alpha subunit have been previously implicated in toxin binding. To identify acidic residues required for toxin binding, extracellular acidic amino acids in domains I and IV of the type IIa Na+ channel alpha subunit were converted to neutral or basic amino acids using site-directed mutagenesis, and altered channels were transiently expressed in tsA-201 cells and tested for 125I-alpha-scorpion toxin binding. Conversion of Glu1613 at the extracellular end of transmembrane segment IVS3 to Arg or His blocked measurable alpha-scorpion toxin binding, but did not affect the level of expression or saxitoxin binding affinity. Conversion of individual residues in the IVS3-S4 extracellular loop to differently charged residues or to Ala identified seven additional residues whose mutation caused significant effects on binding of alpha-scorpion toxin or sea anemone toxin. Moreover, chimeric Na+ channels in which amino acid residues at the extracellular end of segment IVS3 of the alpha subunit of cardiac Na+ channels were substituted into the type IIa channel sequence had reduced affinity for alpha-scorpion toxin characteristic of cardiac Na+ channels. Electrophysiological analysis showed that E1613R has 62- and 82-fold lower affinities for alpha-scorpion and sea anemone toxins, respectively. Dissociation of alpha-scorpion toxin is substantially accelerated at all potentials compared to wild-type channels. alpha-Scorpion toxin binding to wild type and E1613R had similar voltage dependence, which was slightly more positive and steeper than the voltage dependence of steady-state inactivation. These results indicate that nonidentical amino acids of the IVS3-S4 loop participate in alpha-scorpion toxin and sea anemone toxin binding to overlapping sites and that neighboring amino acid residues in the IVS3 segment contribute to the difference in alpha-scorpion toxin binding affinity between cardiac and neuronal Na+ channels. The results also support the hypothesis that this region of the Na+ channel is important for coupling channel activation to fast inactivation.
Article
Full-text available
The polypeptide neurotoxin anthopleurin B (ApB) isolated from the venom of the sea anemone Anthopleura xanthogrammica is one of a family of toxins that bind to the extracellular face of voltage-dependent sodium channels and retard channel inactivation. Because most regions of the sodium channel known to contribute to inactivation are located intracellularly or within the membrane bilayer, identification of the toxin/channel binding site is of obvious interest. Recently, mutation of a glutamic acid residue on the extracellular face of the fourth domain of the rat neuronal sodium channel (rBr2a) was shown to disrupt toxin/channel binding (Rogers, J. C., Qu, Y. S., Tanada, T. N., Scheuer, T., and Catterall, W. A. (1996) J. Biol. Chem. 271, 15950-15962). A negative charge at this position is highly conserved between mammalian sodium channel isoforms. We have constructed mutations of the corresponding residue (Asp-1612) in the rat cardiac channel isoform (rH1) and shown that the lowered affinity occurs primarily through an increase in the toxin/channel dissociation rate koff. Further, we have used thermodynamic mutant cycle analysis to demonstrate a specific interaction between this anionic amino acid and Lys-37 of ApB (DeltaDeltaG = 1.5 kcal/mol), a residue that is conserved among many sea anemone toxins. Reversal of the charge at Asp-1612, as in the mutant D1612R, also affects channel inactivation independent of toxin (-14 mV shift in channel availability). Binding of the toxin to Asp-1612 may therefore contribute both to toxin/channel affinity and to transduction of the effects of the toxin on channel kinetics.
Article
Full-text available
TTX-resistant (TTX-R) sodium currents are preferentially expressed in small C-type dorsal root ganglion (DRG) neurons, which include nociceptive neurons. Two mRNAs that are predicted to encode TTX-R sodium channels, SNS and NaN, are preferentially expressed in C-type DRG cells. To determine whether there are multiple TTX-R currents in these cells, we used patch-clamp recordings to study sodium currents in SNS-null mice and found a novel persistent voltage-dependent sodium current in small DRG neurons of both SNS-null and wild-type mice. Like SNS currents, this current is highly resistant to TTX (Ki = 39+/-9 microM). In contrast to SNS currents, the threshold for activation of this current is near 70 mV, the midpoint of steady-state inactivation is -44 +/- 1 mV, and the time constant for inactivation is 43+/-4 msec at 20 mV. The presence of this current in SNS-null and wild-type mice demonstrates that a distinct sodium channel isoform, which we suggest to be NaN, underlies this persistent TTX-R current. Importantly, the hyperpolarized voltage-dependence of this current, the substantial overlap of its activation and steady-state inactivation curves and its persistent nature suggest that this current is active near resting potential, where it may play an important role in regulating excitability of primary sensory neurons.
Article
Full-text available
Sea anemones are a rich source of biologically active substances. In crayfish muscle fibers, Bunodosoma cangicum whole venom selectively blocks the I K(Ca) currents. In the present study, we report for the first time powerful hemolytic and neuroactive effects present in two different fractions obtained by gel-filtration chromatography from whole venom of B. cangicum. A cytolytic fraction (Bcg-2) with components of molecular mass ranging from 8 to 18 kDa elicited hemolysis of mouse erythrocytes with an EC50 = 14 microg/ml and a maximum dose of 22 microg/ml. The effects of the neuroactive fraction, Bcg-3 (2 to 5 kDa), were studied on isolated crab nerves. This fraction prolonged the compound action potentials by increasing their duration and rise time in a dose-dependent manner. This effect was evident after the washout of the preparation, suggesting the existence of a reversible substance that was initially masking the effects of an irreversible one. In order to elucidate the target of Bcg-3 action, the fraction was applied to a tetraethylammonium-pretreated preparation. An additional increase in action potential duration was observed, suggesting a blockade of a different population of K+ channels or of tetraethylammonium-insensitive channels. Also, tetrodotoxin could not block the action potentials in a Bcg-3-pretreated preparation, suggesting a possible interaction of Bcg-3 with Na+ channels. The present data suggest that B. cangicum venom contains at least two bioactive fractions whose activity on cell membranes seems to differ from the I K(Ca) blockade described previously.
Article
Full-text available
Ion channelopathies have common clinical features, recurrent patterns of mutations, and almost predictable mechanisms of pathogenesis. In skeletal muscle, disorders are associated with mutations in voltage-gated Na(+), K(+), Ca(2+), and Cl(-) channels leading to hypoexcitability, causing periodic paralysis and to hyperexcitabilty, resulting in myotonia or susceptibility to malignant hyperthermia.
Article
Full-text available
We have characterized the effects of BgII and BgIII, two sea anemone peptides with almost identical sequences (they only differ by a single amino acid), on neuronal sodium currents using the whole-cell patch-clamp technique. Neurons of dorsal root ganglia of Wistar rats (P5-9) in primary culture (Leibovitz's L15 medium; 37 degrees C, 95% air/5% CO2) were used for this study (n = 154). These cells express two sodium current subtypes: tetrodotoxin-sensitive (TTX-S; K(i) = 0.3 nM) and tetrodotoxin-resistant (TTX-R; K(i) = 100 microM). Neither BgII nor BgIII had significant effects on TTX-R sodium current. Both BgII and BgIII produced a concentration-dependent slowing of the TTX-S sodium current inactivation (IC50 = 4.1 +/- 1.2 and 11.9 +/- 1.4 microM, respectively), with no significant effects on activation time course or current peak amplitude. For comparison, the concentration-dependent action of Anemonia sulcata toxin II (ATX-II), a well characterized anemone toxin, on the TTX-S current was also studied. ATX-II also produced a slowing of the TTX-S sodium current inactivation, with an IC50 value of 9.6 +/- 1.2 microM indicating that BgII was 2.3 times more potent than ATX-II and 2.9 times more potent than BgIII in decreasing the inactivation time constant (tau(h)) of the sodium current in dorsal root ganglion neurons. The action of BgIII was voltage-dependent, with significant effects at voltages below -10 mV. Our results suggest that BgII and BgIII affect voltage-gated sodium channels in a similar fashion to other sea anemone toxins and alpha-scorpion toxins.
Article
Full-text available
In 1995, Mark Keating and colleagues identified two genes responsible for congenital long QT syndrome, a cause of sudden cardiac death. Perturbations in the ion channels that orchestrate the beating heart were central to the disorder. This revelation provided a molecular model for the study of ventricular arrhythmias and enabled further dissection of the genetic defects underlying subtleties in the cardiac phenotype. Soon, these discoveries will be further translated to clinical medicine, with the expected release of one of the first comprehensive clinical genetic tests in cardiology.
Article
Full-text available
Sea anemones are an important source of various biologically active peptides, and it is known that ATX-II from Anemonia sulcata slows sodium current inactivation. Using six different sodium channel genes (from Nav1.1 to Nav1.6), we investigated the differential selectivity of the toxins AFT-II (purified from Anthopleura fuscoviridis) and Bc-III (purified from Bunodosoma caissarum) and compared their effects with those recorded in the presence of ATX-II. Interestingly, ATX-II and AFT-II differ by only one amino acid (L36A) and Bc-III has 70% similarity. The three toxins induced a low voltage-activated persistent component primarily in the Nav1.3 and Nav1.6 channels. An analysis showed that the 18 dose-response curves only partially fit the hypothesized binding of Lys-37 (sea anemone toxin Anthopleurin B) to the Asp (or Glu) residue of the extracellular IV/S3-S4 loop in cardiac (or nervous) Na+ channels, thus suggesting the substantial contribution of some nearby amino acids that are different in the various channels. As these channels are atypically expressed in mammalian tissues, the data not only suggest that the toxicity is highly dependent on the channel type but also that these toxins and their various physiological effects should be considered prototype models for the design of new and specific pharmacological tools.
Article
Full-text available
Voltage-gated sodium channels are responsible for the upstroke of the action potential in most excitable cells, and their fast inactivation is essential for controlling electrical signaling. In addition, a noninactivating, persistent component of sodium current, I(NaP), has been implicated in integrative functions of neurons including threshold for firing, neuronal bursting, and signal integration. G-protein betagamma subunits increase I(NaP), but the sodium channel subtypes that conduct I(NaP) and the target site(s) on the sodium channel molecule required for modulation by Gbetagamma are poorly defined. Here, we show that I(NaP) conducted by Na(v)1.1 and Na(v)1.2 channels (Na(v)1.1 > Na(v)1.2) is modulated by Gbetagamma; Na(v)1.4 and Na(v)1.5 channels produce smaller I(NaP) that is not regulated by Gbetagamma. These qualitative differences in modulation by Gbetagamma are determined by the transmembrane body of the sodium channels rather than their cytoplasmic C-terminal domains, which have been implicated previously in modulation by Gbetagamma. However, the C-terminal domains determine the quantitative extent of modulation of Na(v)1.2 channels by Gbetagamma. Studies of chimeric and truncated Na(v)1.2 channels identify molecular determinants that affect modulation of I(NaP) located between amino acid residue 1890 and the C terminus at residue 2005. The last 28 amino acid residues of the C terminus are sufficient to support modulation by Gbetagamma when attached to the proximal C-terminal domain. Our results further define the sodium channel subtypes that generate I(NaP) and identify crucial molecular determinants in the C-terminal domain required for modulation by Gbetagamma when attached to the transmembrane body of a responsive sodium channel.
Article
Full-text available
Homology models of proteins are of great interest for planning and analysing biological experiments when no experimental three-dimensional structures are available. Building homology models requires specialized programs and up-to-date sequence and structural databases. Integrating all required tools, programs and databases into a single web-based workspace facilitates access to homology modelling from a computer with web connection without the need of downloading and installing large program packages and databases. SWISS-MODEL workspace is a web-based integrated service dedicated to protein structure homology modelling. It assists and guides the user in building protein homology models at different levels of complexity. A personal working environment is provided for each user where several modelling projects can be carried out in parallel. Protein sequence and structure databases necessary for modelling are accessible from the workspace and are updated in regular intervals. Tools for template selection, model building and structure quality evaluation can be invoked from within the workspace. Workflow and usage of the workspace are illustrated by modelling human Cyclin A1 and human Transmembrane Protease 3. The SWISS-MODEL workspace can be accessed freely at http://swissmodel.expasy.org/workspace/
Article
Full-text available
A new peptide toxin exhibiting a molecular weight of 5043Da (av.) and comprising 47 amino acid residues was isolated from the sea anemone Condylactis gigantea. Purification of the peptide was achieved by a multistep chromatographic procedure monitoring its strong paralytic activity on crustacea (LD(50) approx. 1microg/kg). Complete sequence analysis of the toxic peptide revealed the isolation of a new member of type I sea anemone sodium channel toxins containing the typical pattern of the six cysteine residues. From 11kg of wet starting material, approximately 1g of the peptide toxin was isolated. The physiological action of the new toxin from C. gigantea CgNa was investigated on sodium currents of rat dorsal root ganglion neurons in culture using whole-cell patch clamp technique (n=60). Under current clamp condition (CgNa) increased action potential duration. This effect is due to slowing down of the TTX-S sodium current inactivation, without modifying the activation process. CgNa prolonged the cardiac action potential duration and enhanced contractile force albeit at 100-fold higher concentrations than the Anemonia sulcata toxin ATXII. The action on sodium channel inactivation and on cardiac excitation-contraction coupling resemble previous results with compounds obtained from this and other sea anemones [Shapiro, B.I., 1968. Purification of a toxin from tentacles of the anemone C. gigantea. Toxicon 5, 253-259; Pelhate, M., Zlotkin, E., 1982. Actions of insect toxin and other toxins derived from the venom of scorpion Androtonus australis on isolated giant axons of the cockroach Periplaneta americana. J. Exp. Biol. 97, 67-77; Salgado, V., Kem, W., 1992. Actions of three structurally distinct sea anemone toxins on crustacean and insect sodium channels. Toxicon 30, 1365-1381; Bruhn, T., Schaller, C., Schulze, C., Sanchez-Rodriquez, J., Dannmeier, C., Ravens, U., Heubach, J.F., Eckhardt, K., Schmidtmayer, J., Schmidt, H., Aneiros, A., Wachter, E., Béress, L., 2001. Isolation and characterization of 5 neurotoxic and cardiotoxic polypeptides from the sea anemone Anthopleura elegantissima. Toxicon, 39, 693-702]. Comprehensive analysis of the purified active fractions suggests that CgNa may represent the main peptide toxin of this sea anemone species.
Article
Full-text available
We have characterized the actions of ApC, a sea anemone polypeptide toxin isolated from Anthopleura elegantissima, on neuronal sodium currents (I(Na)) using current and voltage-clamp techniques. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study. These cells express tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) I(Na). In current-clamp experiments, application of ApC increased the average duration of the action potential. Under voltage-clamp conditions, the main effect of ApC was a concentration-dependent increase in the TTX-S I(Na) inactivation time course. No significant effects were observed on the activation time course or on the current peak-amplitude. ApC also produced a hyperpolarizing shift in the voltage at which 50% of the channels are inactivated and caused a significant decrease in the voltage dependence of Na+ channel inactivation. No effects were observed on TTX-R I(Na). Our results suggest that ApC slows the conformational changes required for fast inactivation of the mammalian Na+ channels in a form similar to other site-3 toxins, although with a greater potency than ATX-II, a highly homologous anemone toxin.
Article
Full-text available
CgNa (Condylactis gigantea neurotoxin) is a 47-amino-acid- residue toxin from the giant Caribbean sea anemone Condylactis gigantea. The structure of CgNa, which was solved by 1H-NMR spectroscopy, is somewhat atypical and displays significant homology with both type I and II anemone toxins. CgNa also displays a considerable number of exceptions to the canonical structural elements that are thought to be essential for the activity of this group of toxins. Furthermore, unique residues in CgNa define a characteristic structure with strong negatively charged surface patches. These patches disrupt a surface-exposed cluster of hydrophobic residues present in all anemone-derived toxins described to date. A thorough characterization by patch-clamp analysis using rat DRG (dorsal root ganglion) neurons indicated that CgNa preferentially binds to TTX-S (tetrodotoxin-sensitive) voltage-gated sodium channels in the resting state. This association increased the inactivation time constant and the rate of recovery from inactivation, inducing a significant shift in the steady state of inactivation curve to the left. The specific structural features of CgNa may explain its weaker inhibitory capacity when compared with the other type I and II anemone toxins.
Chapter
The presence and the state of cysteine and cystine residues often have considerable influence on the properties, the structure, and the function of a protein. The sulfhydryl groups of the cysteine residues are in most cases the most reactive functional side chains of the protein. They can easily be oxidized or otherwise modified. They are often of importance for the biological acitivity of the protein. The disulfide bonds of the cystine residues contribute in a unique way to the protein’s spatial structure and to the stability of this structure. Proteins may contain only cysteine residues, only cystine residues, or a mixture of both. In certain proteins post-translationally derivatized sulfhydryl groups have been shown to exist. Obviously, proteins may also be devoid of cyst(e)ine.
Article
Voltage-gated sodium channels are the molecular targets for a broad range of neurotoxins that act at six or more distinct receptor sites on the channel protein. These toxins fall into three groups. Both hydrophilic low molecular mass toxins and larger polypeptide toxins physically block the pore and prevent sodium conductance. Alkaloid toxins and related lipid-soluble toxins alter voltage-dependent gating of sodium channels via an allosteric mechanism through binding to intramembranous receptor sites. In contrast, polypeptide toxins alter channel gating by voltage sensor trapping through binding to extracellular receptor sites. The results of recent studies that define the receptor sites and mechanisms of action of these diverse toxins are reviewed here.
Article
Molecular toxinology research was initially driven by an interest in the small subset of animal toxins that are lethal to humans. However, the realization that many venomous creatures possess a complex repertoire of bioactive peptide toxins with potential pharmaceutical and agrochemical applications has led to an explosion in the number of new peptide toxins being discovered and characterized. Unfortunately, this increased awareness of peptide-toxin diversity has not been matched by the development of a generic nomenclature that enables these toxins to be rationally classified, catalogued, and compared. In this article, we introduce a rational nomenclature that can be applied to the naming of peptide toxins from spiders and other venomous animals.
Article
Comparative protein modeling is increasingly gaining interest since it is of great assistance during the rational design of mutagenesis experiments. The availability of this method, and the resulting models, has however been restricted by the availability of expensive computer hardware and software. To overcome these limitations, we have developed an environment for comparative protein modeling that consists of SWISS-MODEL, a server for automated comparative protein modeling and of the SWISS-PdbViewer, a sequence to structure workbench. The Swiss-PdbViewer not only acts as a client for SWISS-MODEL, but also provides a large selection of structure analysis and display tools. In addition, we provide the SWISS-MODEL Repository, a database containing more than 3500 automatically generated protein models. By making such tools freely available to the scientific community, we hope to increase the use of protein structures and models in the process of experiment design.
Article
In contrast to the many studies on the venoms of scorpions, spiders, snakes and cone snails, up to now there has been no report of the proteomic analysis of sea anemones venoms. In this work we report for the first time the peptide mass fingerprint and some novel peptides in the neurotoxic fraction (Fr III) of the sea anemone Bunodosoma cangicum venom. Fr III is neurotoxic to crabs and was purified by rp-HPLC in a C-18 column, yielding 41 fractions. By checking their molecular masses by ESI-Q-Tof and MALDI-Tof MS we found 81 components ranging from near 250 amu to approximately 6000 amu. Some of the peptidic molecules were partially sequenced through the automated Edman technique. Three of them are peptides with near 4500 amu belonging to the class of the BcIV, BDS-I, BDS-II, APETx1, APETx2 and Am-II toxins. Another three peptides represent a novel group of toxins (~3200 amu). A further three molecules (~ approximately 4900 amu) belong to the group of type 1 sodium channel neurotoxins. When assayed over the crab leg nerve compound action potentials, one of the BcIV- and APETx-like peptides exhibits an action similar to the type 1 sodium channel toxins in this preparation, suggesting the same target in this assay. On the other hand one of the novel peptides, with 3176 amu, displayed an action similar to potassium channel blockage in this experiment. In summary, the proteomic analysis and mass fingerprint of fractions from sea anemone venoms through MS are valuable tools, allowing us to rapidly predict the occurrence of different groups of toxins and facilitating the search and characterization of novel molecules without the need of full characterization of individual components by broader assays and bioassay-guided purifications. It also shows that sea anemones employ dozens of components for prey capture and defense.
Article
Pompilidotoxins (PMTXs, alpha and beta) are small peptides consisting of 13 amino acids purified from the venom of the solitary wasps Anoplius samariensis (alpha-PMTX) and Batozonellus maculifrons (beta-PMTX). They are known to facilitate synaptic transmission in the lobster neuromuscular junction, and to slow sodium channel inactivation. By using beta-PMTX, alpha-PMTX and four synthetic analogs with amino acid changes, we conducted a thorough study of the effects of PMTXs on sodium current inactivation in seven mammalian voltage-gated sodium channel (VGSC) isoforms and one insect VGSC (DmNa(v)1). By evaluating three components of which the inactivating current is composed (fast, slow and steady-state components), we could distinguish three distinct groups of PMTX effects. The first group concerned the insect and Na(v)1.6 channels, which showed a large increase in the steady-state current component without any increase in the slow component. Moreover, the dose-dependent increase in this steady-state component was correlated with the dose-dependent decrease in the fast component. A second group of effects concerned the Na(v)1.1, Na(v)1.2, Na(v)1.3 and Na(v)1.7 isoforms, which responded with a large increase in the slow component, and showed only a small steady-state component. As with the first group of effects, the slow component was dose-dependent and correlated with the decrease in the fast component. Finally, a third group of effects concerned Na(v)1.4 and Na(v)1.5, which did not show any change in the slow or steady-state component. These data shed light on the complex and intriguing behavior of VGSCs in response to PMTXs, helping us to better understand the molecular determinants explaining isoform-specific effects.
Article
As voltage-gated Na(+) channels are responsible for the conduction of electrical impulses in most excitable tissues in the majority of animals (except nematodes), they have become important targets for the toxins of venomous animals, from sea anemones to molluscs, scorpions, spiders and even fishes. During their evolution, different animals have developed a set of cysteine-rich peptides capable of binding different extracellular sites of this channel protein. A fundamental question concerning the mechanism of action of these toxins is whether they act at a common receptor site in Na(+) channels when exerting their different pharmacological effects, or at distinct receptor sites in different Na(v) channels subtypes whose particular properties lead to these pharmacological differences. The alpha-subunits of voltage-gated Na(+) channels (Na(v)1.x) have been divided into at least nine subtypes on the basis of amino acid sequences. Sea anemones have been extensively studied from the toxinological point of view for more than 40 years. There are about 40 sea anemone type 1 peptides known to be active on Na(v)1.x channels and all are 46-49 amino acid residues long, with three disulfide bonds and their molecular weights range between 3000 and 5000 Da. About 12 years ago a general model of Na(v)1.2-toxin interaction, developed for the alpha-scorpion toxins, was shown to fit also to action of sea anemone toxin such as ATX-II. According to this model these peptides are specifically acting on the type 3 site known to be between segments 3 and 4 in domain IV of the Na(+) channel protein. This region is indeed responsible for the normal Na(+) currents fast inactivation that is potently slowed by these toxins. This fundamental "gain-of-function" mechanism is responsible for the strong increase in the action potential duration. They constitute a class of tools by means of which physiologists and pharmacologists can study the structure/function relationships of channel proteins. As most of the structural and electrophysiological studies were performed on type 1 sea anemone sodium channel toxins, we will present a comprehensive and updated review on the current understanding of the physiological actions of these Na channel modifiers.
Article
Three approaches have been used to analyze the mechanism of action of a sea anemone neurotoxin on cultured chick embryonic cardiac cells: 1) electrophysiological measurements; 2) simultaneous recordings of contraction properties; and 3) measurements of cationic influx of 22Na+ and 45Ca++ The chick embryo cell cultures consisted of 3-day aggregates and monolayer cultures which have electrophysiological properties of the early embryonic type and 16-day aggregates which have electrophysiological properties of the adult type. All types of cardiac cell cultures responded similarly to exposure to the 47 amino acid long sea anemone toxin extracted from Anemonia sulcata. The polypeptide toxin provoked action potentials with a plateau phase of long duration, a slowing down of the beating rate and simultaneously with the prolonged action potential an increase in amplitude and duration of cardiac contractions. Our results indicate: 1) that the site of action of the sea anemone toxin on cardiac cell is the Na+ channel as in other excitable system; 2) that the sea anemone toxin can reveal unexpressed ("silent") fast Na+ channels in cardiac cells of the early embryonic type; and 3) that the increase in amplitude and duration of cardiac contractions caused by the polypeptide toxin is most probably due to an indirect activation of the Na+-Ca++ exchange system.
Article
Site 3 sea anemone toxins modify inactivation of mammalian voltage-gated Na channels. One variant, anthopleurin A (ApA), effectively selects for cardiac over neuronal mammalian isoforms while another, anthopleurin B (ApB), which differs in 7 of 49 amino acids, modifies both cardiac and neuronal channels with high and approximately equal affinity. Previous investigations have suggested an important role for cationic residues in determination of toxin activity, and our single-site mutagenesis studies have indicated that isoform discrimination can be partially explained by the unique cationic residues Arg-12 and Lys-49 of anthopleurin B (ApB). Here, we have further investigated the role of cationic residues by characterizing toxin mutants in which two such residues are replaced simultaneously. The ApB double mutants R14Q-K48A (cationic residues identical in both ApA and ApB), R12S-K49Q (cationic residues unique to ApB), and R12S-R14Q (cationic residues located in the unstructured loop shared among anemone toxins) were constructed by site-directed mutagenesis and their biological activities characterized by sodium uptake assays in cell lines expressing the neuronal (N1E-115) or cardiac (RT4-B) isoform of the Na channel. Each double mutant displayed reduced activity compared with wild type, but none were completely inactive. Neutralization of the proximal cationic residues (R12 and R14) was the most effective, reducing affinity 72-fold (neuronal) and 56-fold (cardiac). Substitution of cationic residues that differed between ApB and ApA (R12S-K49Q) reduced affinity of the toxin for neuronal channels to a much greater extent than for cardiac channels, producing affinities only slightly lower than for ApA in each case.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
The three-dimensional structure in aqueous solution of the 49-residue polypeptide anthopleurin-A (AP-A), from the sea anemone Anthopleura xanthogrammica, has been determined from 1H NMR data. A restraint set consisting of 411 interproton distance restraints inferred from NOEs and 19 backbone and 13 side chain dihedral angle restraints from spin-spin coupling constants, as well as 15 lower bound restraints based on the absence of NOEs in the spectra, was used as input for distance geometry calculations in DIANA and simulated annealing and restrained energy minimization in X-PLOR. Stereospecific assignments for 12 β-methylene pairs were also included. The final set of 20 structures had mean pairwise rms differences over the whole molecule of 2.04 Å for the backbone heavy atoms (N, Cα, and C) and 2.59 Å for all heavy atoms. For the well-defined region encompassing residues 2-7 and 17-49, the corresponding values were 0.82 and 1.27 Å, respectively. AP-A adopts a compact structure consisting of four short strands of antiparallel β-sheet (residues 2-4, 20-23, 34-37, and 45-48) connected by three loops. The first loop commences with a type I β-turn which includes two important Asp residues; this loop is the least well-defined region of the protein, although a β-turn involving residues 13-16 is observed in nearly half the structures. The loop linking the second and third strands is constrained by the 29-47 disulfide bond and contains two well-defined β-turns, while the third loop contains the Gly40-Pro41 sequence, which has been identifed previously as the site of cis-trans isomerism. The carboxylate group of Asp7 is close to the ε-ammonium group of Lys37, suggesting that they may form a salt bridge. A pH titration monitored by 2D NMR supports this by showing that Asp7 has a low pKa. It is proposed that this region of the molecule and the nearby residues Asp9 and His39 form part of the molecular surface which interacts with the mammalian cardiac sodium channel.
Article
Peptide neurotoxins were isolated from the venom obtained by electrical stimulation of the sea anemone Bunodosoma caissarum. This technique allows almost pure venom to be collected, and the animals to survive. Three neurotoxins (assayed on crustacean nerves) were isolated by gel filtration and reversed-phase high performance liquid chromatography. Hemolysins were also detected in the venom. The amino acid sequence of a major neurotoxin BcIII was determined. BcIII has 48 amino acid residues with six half-cystine residues. This sequence has homology with the type 1 long sea anemone neurotoxins. Two minor toxins (BcI and II) have similar amino acid composition and amino-terminal sequences to BcIII.
Article
This review addresses the molecular and cellular mechanisms of diseases caused by inherited mutations of ion channels in neurones. Among important recent advances is the elucidation of several dominantly inherited epilepsies caused by mutations of both voltage-gated and ligand-gated ion channels. The neuronal channelopathies show evidence of phenotypic convergence; notably, episodic ataxia can be caused by mutations of either calcium or potassium channels. The channelopathies also show evidence of phenotypic divergence; for instance, different mutations of the same calcium channel gene are associated with familial hemiplegic migraine, episodic or progressive ataxia, coma and epilepsy. Future developments are likely to include the discovery of other ion channel genes associated with inherited and sporadic CNS disorders. The full range of manifestations of inherited ion channel mutations remains to be established.
Article
We have cloned and expressed the full-length human Na(V)1.6 sodium channel cDNA. Northern analysis showed that the hNa(V)1.6 gene, like its rodent orthologues, is abundantly expressed in adult brain but not other tissues including heart and skeletal muscle. Within the adult brain, hNa(V)1.6 mRNA is widely expressed with particularly high levels in the cerebellum, occipital pole and frontal lobe. When stably expressed in human embryonic kidney cells (HEK293), the hNa(V)1.6 channel was found to be very similar in its biophysical properties to human Na(V)1.2 and Na(V)1.3 channels [Eur. J. Neurosci. 12 (2000) 4281-4289; Pflügers Arch. 441 (2001) 425-433]. Only relatively subtle differences were observed, for example, in the voltage dependence of gating. Like hNa(V)1.3 channels, hNa(V)1.6 produced sodium currents with a prominent persistent component when expressed in HEK293 cells. These persistent currents were similar to those reported for the rat Na(V)1.2 channel [Neuron 19 (1997) 443-452], although they were not dependent on over-expression of G protein betagamma subunits. These data are consistent with the proposal that Na(V)1.6 channels may generate the persistent currents observed in cerebellar Purkinje neurons [J. Neurosci. 17 (1997) 4157-4536]. However, in our hNa(V)1.6 cell line we have been unable to detect the resurgent currents that have also been described in Purkinje cells. Although Na(V)1.6 channels have been implicated in producing these resurgent currents [Neuron 19 (1997) 881-891], our data suggest that this may require modification of the Na(V)1.6 alpha subunit by additional factors found in Purkinje neurons but not in HEK293 cells.
Article
Two sodium channel toxins, BgII and BgIII, isolated from the sea anemone Bunodosoma granulifera, have been subjected to an elaborate electrophysiological and pharmacological comparison between five different cloned sodium channels expressed in Xenopus laevis oocytes in order to determine their efficacy, potency and selectivity. Our results reveal large differences in toxin-induced effect between the different sodium channels. These toxins possess the highest efficacy for the insect sodium channel (para). Our data also show that BgII, generally known as a neurotoxin, is especially potent on the insect sodium channel with an EC(50) value of 5.5+/-0.5 nM. Therefore, this toxin can be used as a template for further development of new insecticides. Based on our findings, an evolutionary relationship between crustaceans and insects is also discussed.
Article
Anthopleurin B (ApB) is a type 1 sea anemone toxin, which binds to voltage-sensitive sodium channels (Na(V)'s), thereby delaying channel inactivation. Previous work from our laboratories has demonstrated that the structurally unconstrained region involving residues 8-17 of this polypeptide, designated the Arg-14 loop, is important for full toxin affinity (Seibert et al., (2003) Biochemistry 42, 14515). Within this region, important contributions are made by residues Arg-12 and Leu-18 (Gallagher and Blumenthal, (1994) J. Biol. Chem. 269, 254; Dias-Kadambi et al., (1996) J. Biol. Chem. 271, 23828). Moreover, replacement of glycine residues found at positions 10 or 15 of the loop by alanine has been shown to have profound, isoform-selective effects on toxin-binding kinetics (Seibert et al., (2003)Biochemistry 42, 14515). To thoroughly understand the importance of this entire region, the work described here investigates the contribution of ApB residues Asn-16, Thr-17, and Ser-19 to toxin affinity and isoform selectivity. Our results demonstrate that residues within and proximal to the C terminus of the Arg-14 loop are important modulators of ApB affinity for Na(V) channels, indicating that the loop and channel site 3 are likely in close contact. A comparison of the effects of multiple replacements at each position reveals that Asn-16 and Ser-19 are involved in binding, whereas Thr-17 is not. The fact that anionic replacements for Asn-16 or Ser-19 are highly deleterious for toxin binding strongly suggests that site 3 contains either formal anionic residues or regions of high electron density, which could be formed by aromatic clusters. These data represent the first indication of the presence of such residues or regions within Na(V) site 3.
Article
Voltage-gated sodium channels open (activate) when the membrane is depolarized and close on repolarization (deactivate) but also on continuing depolarization by a process termed inactivation, which leaves the channel refractory, i.e., unable to open again for a period of time. In the "classical" fast inactivation, this time is of the millisecond range, but it can last much longer (up to seconds) in a different slow type of inactivation. These two types of inactivation have different mechanisms located in different parts of the channel molecule: the fast inactivation at the cytoplasmic pore opening which can be closed by a hinged lid, the slow inactivation in other parts involving conformational changes of the pore. Fast inactivation is highly vulnerable and affected by many chemical agents, toxins, and proteolytic enzymes but also by the presence of beta-subunits of the channel molecule. Systematic studies of these modulating factors and of the effects of point mutations (experimental and in hereditary diseases) in the channel molecule have yielded a fairly consistent picture of the molecular background of fast inactivation, which for the slow inactivation is still lacking.
Article
Type I sea anemone toxins are highly potent modulators of voltage-gated Na-channels (Na(v)s) and compete with the structurally dissimilar scorpion alpha-toxins on binding to receptor site-3. Although these features provide two structurally different probes for studying receptor site-3 and channel fast inactivation, the bioactive surface of sea anemone toxins has not been fully resolved. We established an efficient expression system for Av2 (known as ATX II), a highly insecticidal sea anemone toxin from Anemonia viridis (previously named A. sulcata), and mutagenized it throughout. Each toxin mutant was analyzed in toxicity and binding assays as well as by circular dichroism spectroscopy to discern the effects derived from structural perturbation from those related to bioactivity. Six residues were found to constitute the anti-insect bioactive surface of Av2 (Val-2, Leu-5, Asn-16, Leu-18, and Ile-41). Further analysis of nine Av2 mutants on the human heart channel Na(v)1.5 expressed in Xenopus oocytes indicated that the bioactive surfaces toward insects and mammals practically coincide but differ from the bioactive surface of a structurally similar sea anemone toxin, Anthopleurin B, from Anthopleura xanthogrammica. Hence, our results not only demonstrate clear differences in the bioactive surfaces of Av2 and scorpion alpha-toxins but also indicate that despite the general conservation in structure and importance of the Arg-14 loop and its flanking residues Gly-10 and Gly-20 for function, the surface of interaction between different sea anemone toxins and Na(v)s varies.
Article
Sodium channel toxins from sea anemones are employed as tools for dissecting the biophysical properties of inactivation in voltage-gated sodium channels. Cangitoxin (CGTX) is a peptide containing 48 amino acid residues and was formerly purified from Bunodosoma cangicum. Nevertheless, previous works reporting the isolation procedures for such peptide from B. cangicum secretions are controversial and may lead to incorrect information. In this paper, we report a simple and rapid procedure, consisting of two chromatographic steps, in order to obtain a CGTX analog directly from sea anemone venom. We also report a substitution of N16D in this peptide sample and the co-elution of an inseparable minor isoform presenting the R14H substitution. Peptides are named as CGTX-II and CGTX-III, and their effects over Nav1.1 channels in patch clamp experiments are demonstrated.
Analysis of cysteine residues, disulfide bridges, and sulfydryl groups in proteins Advanced methods in protein microsequence analysis
  • A Henschen
  • B Wittmann-Liebold
  • J Salnikow
  • Erdmann
Henschen A. Analysis of cysteine residues, disulfide bridges, and sulfydryl groups in proteins. In: Wittmann-Liebold B, Salnikow J, Erdmann VA, editors. Advanced methods in protein microsequence analysis. Berlin: Springer-Verlag; 1986. p. 244–55.