Neonatal methylphenidate does not impair adult spatial learning in the Morris water maze in rats

University of Cincinnati, Cincinnati, Ohio, United States
Neuroscience Letters (Impact Factor: 2.03). 07/2011; 502(3):152-6. DOI: 10.1016/j.neulet.2011.07.013
Source: PubMed


Methylphenidate (MPD) is the most prescribed drug for attention deficit hyperactivity disorder. Licit and illicit use also occurs during pregnancy, however the effects from this use on offspring development are unknown. To model late gestational exposure, Sprague-Dawley litters were treated with 0, 5, 10, 20, or 30mg/kg×4/day every 2h with MPD on postnatal days 11-20 (within-litter design; days chosen to be comparable to human third trimester brain development). During treatment, body weights were decreased in MPD-treated groups; weight recovery occurred in all but the MPD-30 group by start of testing. MPD-treated rats showed no changes in anxiety (elevated zero maze), swimming ability (straight channel swimming), or spatial learning/reference memory (Morris water maze). MPD does not appear to pose a risk to these CNS functions after exposure during a stage of rat development analogous to third trimester human brain development.

Download full-text


Available from: Charles Vorhees, Jul 27, 2015
  • Source
    • "Therefore, a cued trial was performed between the RNAi and NC groups before acquisition trial. No difference was found in latencies between the two groups, which mean the animals' vision and the motivation to escape the water were not impaired in this study 29. Neither a probe trial nor a reversal of platform location was conducted in the water maze trials of the current study. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies found that Homer 1a, a scaffolding protein localized at the post-synaptic density (PSD) of glutamatergic excitatory synapses, is significantly down-regulated in the brain of spontaneous hypertensive rats (SHR), an animal model of attention deficit hyperactivity disorder (ADHD). Furthermore, a first-line treatment drug for ADHD, methylphenidate, can up-regulate the expression of Homer 1a. To investigate the possible role of Homer 1a in the etiology and pathogenesis of ADHD, a lentiviral vector containing miRNA specific for Homer 1a was constructed in this study. Intracerebroventricular injection of this vector into the brain of Sprague Dawley (SD) rats significantly decreased Homer 1a mRNA and protein expression levels. Compared to their negative controls, these rats displayed a range of abnormal behaviors, including increased locomotor activity and non-selective attention and impaired learning ability. Our results indicated that Homer 1a down-regulation results in deficits in control over behavioral output and learning similar to ADHD.
    Preview · Article · Jan 2013 · International journal of medical sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The attention deficit disorder with hyperactivity (ADDH) is a widely recognized disorder of unknown etiology. Methylphenidate administration is one of the most commonly used treatments to improve symptoms associated with ADDH. Although it is generally a well tolerated drug, several secondary effects may occur. In particular, this paper will focus on the effects on anxiety, in humans and experimental animal models. It has been shown that acute administration of methylphenidate in adults reduces anxiety, in both animal models and humans. On the other hand, chronic treatment during early ages (postnatal and young subjects) results in higher anxiety in adults. In some cases this effect appears together with higher susceptibility of drug consumption. Thus, we find that, in the literature, methylphenidate is capable of inducing different and opposite effects. Thus, further experiments would be required to elucidate the mechanisms by which methylphenidate exert its actions.
    Full-text · Article · Oct 2012 · Revista de neurologia
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early treatment with methylphenidate has a persistent effect on the affective (i.e., anxiety- and depressive-like) behaviors of adult rats and mice. Interestingly, age at methylphenidate exposure appears to be a critical determinant influencing the expression of affective behaviors. In the present study, we exposed rats to methylphenidate during the preweanling period (i.e., PD 11-PD 20) because this ontogenetic period is analogous to early childhood in humans (an age associated with increasing methylphenidate usage). Rats were injected with methylphenidate (0, 2, or 5mg/kg) from PD 11 to PD 20 and reactivity to rewarding and aversive stimuli were measured in early adulthood. Specifically, novelty-induced CPP, sucrose preference, and elevated plus maze behavior were assessed on PD 60. Early treatment with 2 or 5mg/kg methylphenidate increased total time spent in the white compartment of the CPP chamber. This methylphenidate-induced effect occurred regardless of exposure condition. Performance on the elevated plus maze was also impacted by early methylphenidate exposure, because rats treated with 5mg/kg methylphenidate spent more time in the closed compartment of the elevated plus maze than vehicle controls. Early methylphenidate exposure did not alter sucrose preference. These data indicate that exposing rats to methylphenidate during the preweanling period differentially affects anxiety-like behavior depending on the type of anxiety-provoking stimulus. Specifically, early methylphenidate exposure decreased aversion to a bright white room when measured on a novelty-induced CPP task, whereas methylphenidate caused a long-term increase in anxiety when measured on the elevated plus maze.
    Full-text · Article · Mar 2013 · Behavioural brain research
Show more