Transport of large organic ions through syringomycin channels in the membranes containing dipole modifiers

Tsitologiia 01/2011; 53(5):450-6.
Source: PubMed


The effect of the membrane dipole potential (Phid) on a conductance and a steady-state number of functioning channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes made from phosphocholine and bathed in 0.4 M solution of sodium salts of aspartate, gluconate and chloride was shown. The magnitude of Phid was varied with the introduction to membrane bathing solutions of phloretin, which reduces the Phid, and RH 421, increasing the Phid. It was established that in all studied systems the increase in the membrane dipole potential cause a decrease in the steady-state number of open channels. In the systems containing sodium salts of aspartate (Asp) or gluconate (Glc), changes in the number of functioning channels are in an order of magnitude smaller than in systems containing sodium chloride. At the same time, the conductance (g) of single SRE-channels on the membranes bathed in NaCI solution increases with the increase in Phid, and in the systems containing NaAsp or NaGlc the conductance of single channels does not depend on the Phid. The latter is due to the lack of cation/anion selectivity of the SRE-channels in these systems. The different channel-forming activity of SRE in the experimental systems is defined by the gating charge of the channel and the partition coefficient of the dipole modifiers between the lipid and aqueous phases.

Download full-text


Available from: Olga S Ostroumova, Jan 28, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The influence of agents, known to affect the membrane dipole potential, phloretin and RH 421, on the multi channel activity of amphotericin B in lipid bilayers of various compositions, was studied. It was shown that the effects were dependent on the membrane's phospholipid and sphingolipid type. Phloretin enhanced amphotericin B induced steady-state transmembrane current through bilayers made from binary mixtures of POPC (DOPC) and ergosterol and ternary mixture of DPhPC, ergosterol and stearoylphytosphingosine. RH 421 increased steady-state polyene induced transmembrane current through membranes made from binary mixtures of DPhPC (DPhPS) and ergosterol and ternary mixture of DPhPS, ergosterol and stearoylphytosphingosine. It was proposed that the observed effects reflect the fine balance of the interactions between the various components present: amphotericin B, ergosterol, phospholipid, sphingolipid and dipole modifier. The shape of lipid molecules seems to be an important factor impacting the responses of amphotericin B modified bilayers to dipole modifiers. The influence of different phospholipids and sphingolipids on the physical and structural properties of ordered lipid microdomains, enriched in AmB, was also discussed. It was also shown that RH 421 enhanced the antifungal activity of amphotericin B in vitro.
    Full-text · Article · Feb 2014 · Biophysics of Structure and Mechanism