Multidrug resistant tuberculous meningitis in the United States, 1993-2005

Drexel University College of Medicine, Department of Medicine, Division of Infectious Diseases & HIV Medicine, 245 North 15th Street, Mailstop 461, 6308 New College Building, Philadelphia, PA 19102-1192, USA.
The Journal of infection (Impact Factor: 4.44). 07/2011; 63(3):240-2. DOI: 10.1016/j.jinf.2011.07.005
Source: PubMed
9 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug-resistant tuberculosis, including drug-resistant tuberculous meningitis, is an emerging health problem in many countries. An association with Beijing strains and drug resistance-related mutations, such as mutations in katG and rpoB genes, has been found. The pathology, clinical features and neuroimaging characteristics of drug-resistant tuberculous meningitis are similar to drug-responsive tuberculous meningitis. Detection of mycobacteria in cerebrospinal fluid (CSF) by conventional methods (smear examination or culture) is often difficult. Nucleic acid amplification assays are better methods owing to their rapidity and high sensitivity. The Xpert(®) MTB/RIF assay (Cepheid, CA, USA) is a fully-automated test that has also been found to be effective for CSF samples. Treatment of multidrug-resistant tuberculous meningitis depends on the drug susceptibility pattern of the isolate and/or the previous treatment history of the patient. Second-line drugs with good penetration of the CSF should be preferred. Isoniazid monoresistant disease requires addition of another drug with better CSF penetration. Drug-resistant tuberculous meningitis is associated with a high mortality. HIV infected patients with drug-resistant tuberculous meningitis have severe clinical manifestations with exceptionally high mortality. Prevention of tuberculosis is the key to reduce drug-resistant tuberculous meningitis.
    Full-text · Article · Jun 2013 · Expert Review of Anti-infective Therapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers to provide insight into the empiric treatment of TBM. Methods Mycobacterium tuberculosis was cultured from the cerebrospinal fluid (CSF) of 142 patients and was tested for susceptibility to first-line antituberculosis drugs, streptomycin (SM), isoniazid (INH), rifampicin (RIF) and ethambutol (EMB). Results Twenty of 142 isolates (14.1 %) were resistant to at least one antituberculosis drug, and five (3.5 %) were resistant to at least INH and RIF, [multidrug resistant (MDR)]. The resistance rate was 12, 4.9, 4.2 and 3.5 % for INH, SM, EMB and RIF, respectively. The monoresistance rate was 6.3, 1.4 and 0.7 % for INH, SM and EMB respectively. There was no monoresistance to RIF. The mortality rate was 23.8 % in fully susceptible cases while it was 33.3 % for those exhibiting monoresistance to INH, and 40 % in cases with MDR-TBM. In compared to patients without resistance to any first-line drug, the relative risk of death for INH-monoresistance and MDR-TBM was 1.60 (95 % CI, 0.38–6.82) and 2.14 (95 % CI, 0:34–13:42), respectively. Conclusion INH-resistance and MDR rates seemed not to be worrisome in our study. However, considering their adverse effects on treatment, rapid detection of resistance to at least INH and RIF would be most beneficial for designing anti-TB therapy. Still, empiric TBM treatment should be started immediately without waiting the drug susceptibility testing.
    Full-text · Article · Nov 2015 · Annals of Clinical Microbiology and Antimicrobials