Comparative Quantitative Analysis of Cluster of Differentiation 45 Antigen Expression on Lymphocyte Subsets

Department of Laboratory Medicine, Graduate School, The Catholic University of Korea, College of Medicine, Seoul, Korea.
The Korean Journal of Laboratory Medicine (Impact Factor: 1.31). 07/2011; 31(3):148-53. DOI: 10.3343/kjlm.2011.31.3.148
Source: PubMed


Since the recent introduction of radioimmunotherapy (RIT) using antibodies against cluster of differentiation (CD) 45 for the treatment of lymphoma, the clinical significance of the CD45 antigen has been increasing steadily. Here, we analyzed CD45 expression on lymphocyte subsets using flow cytometry in order to predict the susceptibility of normal lymphocytes to RIT.
Peripheral blood specimens were collected from 14 healthy individuals aged 25-54 yr. The mean fluorescence intensity (MFI) of the cell surface antigens was measured using a FACSCanto II system (Becton Dickinson Bioscience, USA). MFI values were converted into antibody binding capacity values using a Quantum Simply Cellular microbead kit (Bangs Laboratories, Inc., USA).
Among the lymphocyte subsets, the expression of CD45 was the highest (725,368±42,763) on natural killer T (NKT) cells, 674,030±48,187 on cytotoxic/suppressor T cells, 588,750±48,090 on natural killer (NK) cells, 580,211±29,168 on helper T (Th) cells, and 499,436±21,737 on B cells. The Th cells and NK cells expressed a similar level of CD45 (P=0.502). Forward scatter was the highest in NKT cells (P<0.05), whereas side scatter differed significantly between each of the lymphocyte subsets (P<0.05). CD3 expression was highest in the Th and NKT cells.
NKT cells express the highest levels of CD45 antigen. Therefore, this lymphocyte subset would be most profoundly affected by RIT or pretargeted RIT. The monitoring of this lymphocyte subset during and after RIT should prove helpful.

Download full-text


Available from: PubMed Central · License: CC BY-NC
  • [Show abstract] [Hide abstract]
    ABSTRACT: The methods for cartilage repair have been studied so far, yet many of them seem to have limitations due to the low regenerative capacity of articular cartilage. Mesenchymal stem cell (MSC) has been suggested as an alternative solution to remedy this challenging problem. MSCs, which have extensive differentiation capacity, can be induced to differentiate into chondrocytes under specific conditions. Particularly, this review focused on the effects of growth factors, cell-to-cell interactions and biomaterials in chondrogenesis of MSCs. Appropriate stimulations through these factors are crucial in differentiation and proliferation of MSCs. However, use of MSCs for cartilage repair has some drawbacks and risks, such as expression of hypertrophy-related genes in MSCs-derived chondrocytes and consequent calcification or cell death. Nevertheless, the clinical application of MSCs is expected in the future with advanced technology.
    No preview · Article · May 2012 · International Journal of Stem Cells
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although focusing attention on the statistical analysis of complex mixture profiles is important, the forensic science community will also benefit from directing research to improving the reduction of the incidence of mixtures before DNA extraction. This preliminary study analysed the use of fluorescence assisted cell sorting (FACS) for separation of cellular mixtures before DNA extraction, specifically mixtures of relatively fresh blood and saliva from two donors, prepared in 14 different mixture ratios. Improvements in the number of detectable alleles from the targeted cell type and overall profile quality were seen when compared to the results from unseparated samples. STRmix calculations revealed increases in likelihood ratios after separation, demonstrating the potential for higher probative values to be obtained from forensically relevant mixtures after subjecting them to FACS than from unsorted samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    No preview · Article · Oct 2014 · Forensic Science International: Genetics