Up-regulation of PPARγ, heat shock protein-27 and-72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes

Department of Pharmacology, Cardiovascular and Diabetes Research Laboratory, All India Institute of Medical Sciences, New Delhi, India.
The British journal of nutrition (Impact Factor: 3.45). 06/2011; 106(11):1713-23. DOI: 10.1017/S000711451100225X
Source: PubMed


Naringin, a bioflavonoid isolated from grapefruit, is well known to possess lipid-lowering and insulin-like properties. Therefore, we assessed whether naringin treatment ameliorates insulin resistance (IR), β-cell dysfunction, hepatic steatosis and kidney damage in high-fat diet (HFD)-streptozotocin (STZ)-induced type 2 diabetic rats. Wistar albino male rats were fed a HFD (55 % energy from fat and 2 % cholesterol) to develop IR and on the 10th day injected with a low dose of streptozotocin (40 mg/kg, intraperitoneal (ip)) to induce type 2 diabetes. After confirmation of hyperglycaemia (>13·89 mmol/l) on the 14th day, different doses of naringin (25, 50 and 100 mg/kg per d) and rosiglitazone (5 mg/kg per d) were administered orally for the next 28 d while being maintained on the HFD. Naringin significantly decreased IR, hyperinsulinaemia, hyperglycaemia, dyslipidaemia, TNF-α, IL-6, C-reactive protein and concomitantly increased adiponectin and β-cell function in a dose-dependent manner. Increased thiobarbituric acid-reactive substances and decreased antioxidant enzyme activities in the serum and tissues of diabetic rats were also normalised. Moreover, naringin robustly increased PPARγ expression in liver and kidney; phosphorylated tyrosine insulin receptor substrate 1 in liver; and stress proteins heat shock protein (HSP)-27 and HSP-72 in pancreas, liver and kidney. In contrast, NF-κB expression in these tissues along with sterol regulatory element binding protein-1c and liver X receptor- expressions in liver were significantly diminished. In addition, microscopic observations validated that naringin effectively rescues β-cells, hepatocytes and kidney from HFD-STZ-mediated oxidative damage and pathological alterations. Thus, this seminal study provides cogent evidence that naringin ameliorates IR, dyslipidaemia, β-cell dysfunction, hepatic steatosis and kidney damage in type 2 diabetic rats by partly regulating oxidative stress, inflammation and dysregulated adipocytokines production through up-regulation of PPARγ, HSP-27 and HSP-72.

Download full-text


Available from: Narender Kumar, Mar 14, 2014
  • Source
    • "e of ethanol - related behaviors , lead to an important conclusion , namely , that the changes in the voluntary ethanol intake and CPP scores of mice induced by naringin were dependent on PPAR - g activation . This is consistent with previous reports which showed that GW9662 significantly reverse the activities of the PPAR - g agonist , naringin ( Sharma et al . , 2011 ) ."
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, PPAR-γ activation has emerged as a potential treatment for alcoholism. However, the adverse effects of synthetic PPAR-γ activators, despite being effective drugs, prompted the need for novel PPAR-γ agonists that retain efficacy and potency with a lower potential of side effects. Hence, naringin, a bioflavonoid isolated from citrus fruits and recently identified as a natural ligand of PPAR-γ, has begun to be evaluated for treatment of alcoholism. It is well known to possess several therapeutic benefits in addition to its anti-anxiety and antidepressant properties. In the present study, we assessed whether naringin treatment possesses anti-ethanol reward properties in C57BL/6 mice. We used the two-bottle choice drinking paradigm and ethanol-induced conditioned place preference (CPP) to examine the effect of naringin treatment on ethanol drinking. Results have shown that, compared with vehicle, naringin (10–100 mg/kg) significantly and dose-dependently decreased voluntary ethanol intake and preference in a two-bottle choice drinking paradigm [3–15% (v/v) escalating over 2 weeks], with no significant effect observed on saccharin [0.02–0.08% (w/v)] or on quinine [15–60 μM (w/v)] intake. In addition, there was no significant difference in blood ethanol concentration (BEC) between groups following naringin administration of 3 g of ethanol/kg body weight. Interestingly, when mice were treated with vehicle or naringin (30 mg/kg) before injection of ethanol (1.5 g/kg) during conditioning days, naringin inhibited the acquisition of ethanol-CPP. More importantly, these effects were significantly attenuated when mice were pre-injected with the peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662. Taken together, the present findings are the first to implicate naringin and PPAR-γ receptors in the behavioral and reward-related effects of ethanol and raise the question of whether specific drugs that target PPAR-γ receptors could potentially reduce excessive ethanol consumption and preference.
    Full-text · Article · Sep 2014 · Alcohol
  • Source
    • "and 81.51–98.1 mg/100 g fresh weight, respectively) (Yoo et al., 2004). Hesperidin and naringin attenuated hyperlipidaemia and hepatic steatosis, partly by regulating fatty acid and cholesterol metabolism through enhancing hepatic and adipocyte PPARγ expression in type-2 diabetic animals (Jung, Lee, Park, Kang, & Choi, 2006; Sharma et al., 2011). In this study, administration of yuzu peel increased the mRNA expression of markers of lipid oxidation (pparab and acadm in liver, pparg in adipose tissue, and acox1 in both) and mature adipocytes (adipoqb in adipose tissue) in DIO zebrafish without affecting markers of lipogenesis (fasn and acacb in adipose tissue and liver) (Figs 3 and 4). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Effects of yuzu peel (Citrus junos Siebold ex Tanaka), yuzu pomace after hexane extraction, and auraptene on metabolic disorders in zebrafish with diet-induced obesity (DIO) were evaluated. All materials tested exhibited anti-obesity effects. Yuzu peel significantly suppressed the rise in plasma triacylglycerol (TG) and liver lipid accumulation. The hepatic mRNA expression of pparab (peroxisome proliferator-activated receptor, alpha b) and its target genes were significantly upregulated by yuzu peel, which suggests enhanced fatty acid β-oxidation in liver. In visceral adipose tissue, yuzu peel significantly increased the mRNA expression of pparg (peroxisome proliferator-activated receptor, gamma) and adipoqb (adiponectin, C1Q and collagen domain containing, b), which play roles in adipose differentiation and maintenance. Our findings suggest that yuzu peel exerts anti-obesity effects by activating hepatic PPARα and adipocyte PPARγ pathways. Additionally, the anti-obesity effects of yuzu pomace suggest a novel application to achieve complete use of yuzu instead of disposal as industrial waste.
    Full-text · Article · Sep 2014 · Journal of Functional Foods
  • Source
    • "2.2. Preparation of Animal Model [12] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Skin wound healing is a critical and complex biological process after trauma. This process is activated by signaling pathways of both epithelial and nonepithelial cells, which release a myriad of different cytokines and growth factors. Hepatocyte growth factor (HGF) is a cytokine known to play multiple roles during the various stages of wound healing. This study evaluated the benefits of HGF on reepithelialization during wound healing and investigated its mechanisms of action. Gross and histological results showed that HGF significantly accelerated reepithelialization in diabetic (DB) rats. HGF increased the expressions of the cell adhesion molecules β 1-integrin and the cytoskeleton remodeling protein integrin-linked kinase (ILK) in epidermal cells in vivo and in vitro. Silencing of ILK gene expression by RNA interference reduced expression of β 1-integrin, ILK, and c-met in epidermal cells, concomitantly decreasing the proliferation and migration ability of epidermal cells. β 1-Integrin can be an important maker of poorly differentiated epidermal cells. Therefore, these data demonstrate that epidermal cells become poorly differentiated state and regained some characteristics of epidermal stem cells under the role of HGF after wound. Taken together, the results provide evidence that HGF can accelerate reepithelialization in skin wound healing by dedifferentiation of epidermal cells in a manner related to the β 1-integrin/ILK pathway.
    Full-text · Article · Dec 2013
Show more