Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5 rh: structure of the RING domain of TRIM5

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Journal of Virology (Impact Factor: 4.44). 09/2011; 85(17):8725-37. DOI: 10.1128/JVI.00497-11
Source: PubMed


TRIM5α(rh) is a cytosolic protein that potently restricts HIV-1 before reverse transcription. TRIM5α(rh) is composed of four different domains: RING, B-box 2, coiled coil, and B30.2(SPRY). The contribution of each of these domains to restriction has been extensively studied, with the exception of the RING domain. The RING domain of TRIM5α exhibits E3-ubiquitin ligase activity, but the contribution of this activity to the restriction of HIV-1 is not known. To test the hypothesis that the E3-ubiquitin ligase activity of the RING domain modulates TRIM5α(rh) restriction of HIV-1, we correlated the E3-ubiquitin ligase activity of a panel of TRIM5α(rh) RING domain variants with the ability of these mutant proteins to restrict HIV-1. For this purpose, we first solved the nuclear magnetic resonance structure of the RING domain of TRIM5α and defined potential functional regions of the RING domain by homology to other RING domains. With this structural information, we performed a systematic mutagenesis of the RING domain regions and tested the TRIM5α RING domain variants for the ability to undergo self-ubiquitylation. Several residues, particularly the ones on the E2-binding region of the RING domain, were defective in their self-ubiquitylation ability. To correlate HIV-1 restriction to self-ubiquitylation, we used RING domain mutant proteins that were defective in self-ubiquitylation but preserve important properties required for potent restriction by TRIM5α(rh), such as capsid binding and higher-order self-association. From these investigations, we found a set of residues that when mutated results in TRIM5α molecules that lost both the ability to potently restrict HIV-1 and their self-ubiquitylation activity. Remarkably, all of these changes were in residues located in the E2-binding region of the RING domain. Overall, these results demonstrate a role for TRIM5α self-ubiquitylation in the ability of TRIM5α to restrict HIV-1.

Download full-text


Available from: Francesca Di Nunzio
  • Source
    • "Therefore, the V435K-I436K mutation affects restriction of incoming HIV-1 seemingly without altering protein levels, unlike I376K-L377K which reduces both. We investigated the ability of WT and V435K-I436K TRIM5α Rh to physically interact with HIV-1CA-NC complexes in a CA-binding assay in vitro[41,42]. Briefly, purified and assembled HIV-1CA-NC complexes were mixed with TRIM5α Rh proteins, which were over-expressed in and isolated from HEK293T cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: TRIM5α from the rhesus macaque (TRIM5αRh) is a restriction factor that shows strong activity against HIV-1. TRIM5αRh binds specifically to HIV-1 capsid (CA) through its B30.2/PRYSPRY domain shortly after entry of the virus into the cytoplasm. Recently, three putative SUMO interacting motifs (SIMs) have been identified in the PRYSPRY domain of human and macaque TRIM5α. However, structural modeling of this domain suggested that two of them were buried in the hydrophobic core of the protein, implying that interaction with SUMO was implausible, while the third one was not relevant to restriction. In light of these results, we re-analyzed the TRIM5αRh PRYSPRY sequence and identified an additional putative SIM (435VIIC438) which we named SIM4. This motif is exposed at the surface of the PRYSPRY domain, allowing potential interactions with SUMO or SUMOylated proteins. Introducing a double mutation in SIM4 (V435K, I436K) did not alter stability, unlike mutations in SIM1. SIM4-mutated TRIM5αRh failed to bind HIV-1CA and lost the ability to restrict this virus. Accordingly, SIM4 undergoes significant variation among primates and substituting this motif with naturally occurring SIM4 variants affected HIV-1 restriction by TRIM5αRh, suggesting a direct role in capsid recognition. Interestingly, SIM4-mutated TRIM5αRh also failed to activate NF-κB and AP-1-mediated transcription. Although there is no direct evidence that SIM4 is involved in direct interaction with SUMO or a SUMOylated protein, mutating this motif strongly reduced co-localization of TRIM5αRh with SUMO-1 and with PML, a SUMOylated nuclear protein. In conclusion, this new putative SIM is crucial for both direct interaction with incoming capsids and for NF-κB/AP-1 signaling. We speculate that the latter function is mediated by interactions of SIM4 with a SUMOylated protein involved in the NF-κB/AP-1 signaling pathways.
    Full-text · Article · Jan 2016
  • Source
    • "Because the use of HIV-1 viruses bearing capsid changes suggested that the HIV-1 capsid is the determinant for MxB restriction, we examined the ability of MxB to associate with the HIV-1 core. For this purpose, we tested the ability of MxB to bind in vitro assembled HIV-1 capsid-nucleocapsid (CA-NC) complexes, as described [24-26]. In vitro assembled HIV-1 CA-NC complexes recapitulate the surface of the HIV-1 core, and are an established model to evaluate the ability of cellular factors to interact with the HIV-1 core [25,27-29]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The IFN-¿-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Genetic evidence suggested that capsid is the viral determinant for restriction by MxB. This work explores the ability of MxB to bind to the HIV-1 core, and the role of capsid-binding in restriction.ResultsWe showed that MxB binds to the HIV-1 core and that this interaction leads to inhibition of the uncoating process of HIV-1. These results identify MxB as an endogenously expressed protein with the ability to inhibit HIV-1 uncoating. In addition, we found that a benzimidazole-based compound known to have a binding pocket on the surface of the HIV-1 capsid prevents the binding of MxB to capsid. The use of this small-molecule identified the MxB binding region on the surface of the HIV-1 core. Domain mapping experiments revealed the following requirements for restriction: 1) MxB binding to the HIV-1 capsid, which requires the 20 N-terminal amino acids, and 2) oligomerization of MxB, which is mediated by the C-terminal domain provides the avidity for the interaction of MxB with the HIV-1 core.Conclusions Overall our work establishes that MxB binds to the HIV-1 core and inhibits the uncoating process of HIV-1. Moreover, we demonstrated that HIV-1 restriction by MxB requires capsid binding and oligomerization.
    Full-text · Article · Aug 2014 · Retrovirology
  • Source
    • "Cellular proteins were extracted with radioimmunoprecipita - tion assay ( RIPA ) buffer as previously described ( Lienlaf et al . , 2011 ) ."
    [Show abstract] [Hide abstract]
    ABSTRACT: SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition.
    Full-text · Article · Jul 2014 · Virology
Show more