Pereira R, Monahan WB, Wake DB.. Predictors for reproductive isolation in a ring species complex following genetic and ecological divergence. BMC Evol Biol 11: 194

Museum of Vertebrate Zoology and Department of Integrative Biology, 3101 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3160, USA.
BMC Evolutionary Biology (Impact Factor: 3.37). 07/2011; 11(1):194. DOI: 10.1186/1471-2148-11-194
Source: PubMed


Reproductive isolation (RI) is widely accepted as an important "check point" in the diversification process, since it defines irreversible evolutionary trajectories. Much less consensus exists about the processes that might drive RI. Here, we employ a formal quantitative analysis of genetic interactions at several stages of divergence within the ring species complex Ensatina eschscholtzii in order to assess the relative contribution of genetic and ecological divergence for the development of RI.
By augmenting previous genetic datasets and adding new ecological data, we quantify levels of genetic and ecological divergence between populations and test how they correlate with a restriction of genetic admixture upon secondary contact. Our results indicate that the isolated effect of ecological divergence between parental populations does not result in reproductively isolated taxa, even when genetic transitions between parental taxa are narrow. Instead, processes associated with overall genetic divergence are the best predictors of reproductive isolation, and when parental taxa diverge in nuclear markers we observe a complete cessation of hybridization, even to sympatric occurrence of distinct evolutionary lineages. Although every parental population has diverged in mitochondrial DNA, its degree of divergence does not predict the extent of RI.
These results show that in Ensatina, the evolutionary outcomes of ecological divergence differ from those of genetic divergence. While evident properties of taxa may emerge via ecological divergence, such as adaptation to local environment, RI is likely to be a byproduct of processes that contribute to overall genetic divergence, such as time in geographic isolation, rather than being a direct outcome of local adaptation.

  • Source
    • "For example, in a contact zone between central European newts, Babik et al. [46] document a tighter correlation between nuclear DNA and morphological hybrid indices than between mtDNA and morphology. Also, a recent study in the Ensatina salamander complex of North America shows that divergence in neutral nuclear markers is better correlated with reproductive isolation than mtDNA [47]. Additional ecological and phenotypic data will be necessary to properly test the hypothesis that neutral nuclear markers show a better association to adaptive variation than mitochondrial markers. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The geographic distribution of evolutionary lineages and the patterns of gene flow upon secondary contact provide insight into the process of divergence and speciation. We explore the evolutionary history of the common lizard Zootoca vivipara (= Lacerta vivipara) in the Iberian Peninsula and test the role of the Pyrenees and the Cantabrian Mountains in restricting gene flow and driving lineage isolation and divergence. We also assess patterns of introgression among lineages upon secondary contact, and test for the role of high-elevation trans-mountain colonisations in explaining spatial patterns of genetic diversity. We use mtDNA sequence data and genome-wide AFLP loci to reconstruct phylogenetic relationships among lineages, and measure genetic structure RESULTS: The main genetic split in mtDNA corresponds generally to the French and Spanish sides of the Pyrenees as previously reported, in contrast to genome-wide AFLP data, which show a major division between NW Spain and the rest. Both types of markers support the existence of four distinct and geographically congruent genetic groups, which are consistent with major topographic barriers. Both datasets reveal the presence of three independent contact zones between lineages in the Pyrenean region, one in the Basque lowlands, one in the low-elevation mountains of the western Pyrenees, and one in the French side of the central Pyrenees. The latter shows genetic evidence of a recent, high-altitude trans-Pyrenean incursion from Spain into France. The distribution and age of major lineages is consistent with a Pleistocene origin and a role for both the Pyrenees and the Cantabrian Mountains in driving isolation and differentiation of Z. vivipara lineages at large geographic scales. However, mountain ranges are not always effective barriers to dispersal, and have not prevented a recent high-elevation trans-Pyrenean incursion that has led to asymmetrical introgression among divergent lineages. Cytonuclear discordance in patterns of genetic structure and introgression at contact zones suggests selection may be involved at various scales. Suture zones are important areas for the study of lineage formation and speciation, and our results show that biogeographic barriers can yield markedly different phylogeographic patterns in different vertebrate and invertebrate taxa.
    Full-text · Article · Sep 2013 · BMC Evolutionary Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hybridization between genetically divergent populations is an important evolutionary process, with an outcome that is difficult to predict. We used controlled crosses and freely mating hybrid swarms, followed for up to 30 generations, to examine the morphological and fitness consequences of interpopulation hybridization in the copepod Tigriopus californicus. Patterns of fitness in two generations of controlled crosses were partly predictive of long-term trajectories in hybrid swarms. For one pair of populations, controlled crosses revealed neutral or beneficial effects of hybridization after the F1 generation, and hybrid swarm fitness almost always equalled or exceeded that of the midparent. For a second pair, controlled crosses showed F2 hybrid breakdown, but increased fitness in backcrosses, and hybrid swarm fitness deviated both above and below that of the parentals. Nevertheless, individual swarm replicates exhibited different fitness trajectories over time that were not related in a simple manner to their hybrid genetic composition, and fixation of fitter hybrid phenotypes was not observed. Hybridization did not increase overall morphological variation, and underlying genetic changes may have been masked by phenotypic plasticity. Nevertheless, one type of hybrid swarm exhibited a repeatable pattern of transgressively large eggsacs, indicating a positive effect of hybridization on individual fecundity. Additionally, both parental and hybrid swarms exhibited common phenotypic trends over time, indicating common selective pressures in the laboratory environment. Our results suggest that, in a system where much work has focused on F2 hybrid breakdown, the long-term fitness consequences of interpopulation hybridization are surprisingly benign.
    Full-text · Article · Dec 2012 · Journal of Evolutionary Biology

  • No preview · Article · Jan 2013 · BMC Evolutionary Biology
Show more