Article

Natural History of Headache after Traumatic Brain Injury

Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195-6490, USA.
Journal of neurotrauma (Impact Factor: 3.71). 07/2011; 28(9):1719-25. DOI: 10.1089/neu.2011.1914
Source: PubMed

ABSTRACT

Headache is one of the most common persisting symptoms after traumatic brain injury (TBI). Yet there is a paucity of prospective longitudinal studies of the incidence and prevalence of headache in a sample with a range of injury severity. We sought to describe the natural history of headache in the first year after TBI, and to determine the roles of prior history of headache, sex, and severity of TBI as risk factors for post-traumatic headache. A cohort of 452 acute, consecutive patients admitted to inpatient rehabilitation services with TBI were enrolled during their inpatient rehabilitation from February 2008 to June 2009. Subjects were enrolled across 7 acute rehabilitation centers designated as TBI Model Systems centers. They were prospectively assessed by structured interviews prior to inpatient rehabilitation discharge, and at 3, 6, and 12 months after injury. Results of this natural history study suggest that 71% of participants reported headache during the first year after injury. The prevalence of headache remained high over the first year, with more than 41% of participants reporting headache at 3, 6, and 12 months post-injury. Persons with a pre-injury history of headache (p<0.001) and females (p<0.01) were significantly more likely to report headache. The incidence of headache had no relation to TBI severity (p=0.67). Overall, headache is common in the first year after TBI, independent of the severity of injury range examined in this study. Use of the International Classification of Headache Disorders criteria requiring onset of headache within 1 week of injury underestimates rates of post-traumatic headache. Better understanding of the natural history of headache including timing, type, and risk factors should aid in the design of treatment studies to prevent or reduce the chronicity of headache and its disruptive effects on quality of life.

Download full-text

Full-text

Available from: Sureyya Dikmen
  • Source
    • "If a physiological basis for such symptoms can be established, patients can better understand the nature of their symptoms and hopefully be more compliant with treatment, whether it is medical, occupational, physical, or psychological. For example, post traumatic headache, which occurs in up to 70% of patients in the first year and 25% after the first year [11], is frequently debated as an entity due to a variety of factors including medicolegal influences and a pathophysiology that is not completely understood [12]. The possible pathophysiological mechanism may be related to neurogenic inflammation characterized by locally increased blood flow, plasma protein leakage from blood vessels, mast cell degranulation, and platelet aggregation [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to measure cerebral blood flow (CBF) and (123)I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.
    Full-text · Article · Jan 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop a single TBI severity classification system based on commonly used TBI severity measures and indicators that (1) maximally uses available positive evidence to classify TBI severity in three categories: (a) Moderate-Severe (Definite) TBI, (b) Mild (Probable) TBI, (c) Symptomatic (Possible) TBI; (2) reflects current clinical knowledge and relevance; and (3) classifies a larger number of cases than single indicator systems with reasonable accuracy. The study sample of a defined population consisted of 1501 unique Olmsted County residents with at least one confirmed TBI event from 1985 to 1999. Within the sample, 1678 TBI events were confirmed. Single measures of TBI severity were not available in a large percentage of these events, i.e., Glasgow Coma Scale (GCS) was absent in 1242 (74.0%); loss of consciousness, absent in 178 (70.2%), posttraumatic amnesia (PTA), absent in 974 (58.1%), head CT, not done in 827 (49.3%). The Mayo Classification System for TBI Severity was developed to classify cases based on available indicators that included death due to TBI, trauma-related neuroimaging abnormalities, GCS, PTA, loss of consciousness and specified post-concussive symptoms. Using the Mayo system, all cases were classified. For the Moderate-Severe (Definite) TBI classification, estimated sensitivity was 89% and estimated specificity was 98%. By maximally using relevant available positive evidence, the Mayo system classifies a larger number of cases than single indicator systems with reasonable accuracy. This system may be of use in retrospective research and for determination of TBI severity for planning postacute clinical care.
    No preview · Article · Oct 2007 · Journal of Neurotrauma
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Headache is one of the most common persisting symptoms after traumatic brain injury (TBI). Yet there is a paucity of prospective longitudinal studies of the incidence and prevalence of headache in a sample with a range of injury severity. We sought to describe the natural history of headache in the first year after TBI, and to determine the roles of prior history of headache, sex, and severity of TBI as risk factors for post-traumatic headache. A cohort of 452 acute, consecutive patients admitted to inpatient rehabilitation services with TBI were enrolled during their inpatient rehabilitation from February 2008 to June 2009. Subjects were enrolled across 7 acute rehabilitation centers designated as TBI Model Systems centers. They were prospectively assessed by structured interviews prior to inpatient rehabilitation discharge, and at 3, 6, and 12 months after injury. Results of this natural history study suggest that 71% of participants reported headache during the first year after injury. The prevalence of headache remained high over the first year, with more than 41% of participants reporting headache at 3, 6, and 12 months post-injury. Persons with a pre-injury history of headache (p<0.001) and females (p<0.01) were significantly more likely to report headache. The incidence of headache had no relation to TBI severity (p=0.67). Overall, headache is common in the first year after TBI, independent of the severity of injury range examined in this study. Use of the International Classification of Headache Disorders criteria requiring onset of headache within 1 week of injury underestimates rates of post-traumatic headache. Better understanding of the natural history of headache including timing, type, and risk factors should aid in the design of treatment studies to prevent or reduce the chronicity of headache and its disruptive effects on quality of life.
    Full-text · Article · Jul 2011 · Journal of neurotrauma
Show more