Article

Enantioselective, Palladium-Catalyzed α-Arylation of N -Boc Pyrrolidine: In Situ React IR Spectroscopic Monitoring, Scope, and Synthetic Applications

Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
The Journal of Organic Chemistry (Impact Factor: 4.72). 06/2011; 76(15):5936-53. DOI: 10.1021/jo2011347
Source: PubMed

ABSTRACT

A comprehensive study of the enantioselective Pd-catalyzed α-arylation of N-Boc pyrrolidine has been carried out. The protocol involves deprotonation of N-Boc pyrrolidine using s-BuLi/(-)-sparteine in TBME or Et(2)O at -78 °C, transmetalation with ZnCl(2) and Negishi coupling using Pd(OAc)(2), t-Bu(3)P-HBF(4) and the aryl bromide. This paper reports several new features including in situ React IR spectroscopic monitoring of the process; use of (-)-sparteine and the (+)-sparteine surrogate to access products with opposite configuration; development of a catalytic asymmetric lithiation-Negishi coupling reaction; extension to a wide range of heteroaromatic bromides; total synthesis of (R)-crispine A, (S)-nicotine and (S)-SIB-1508Y via short synthetic routes; and examples of α-vinylation of N-Boc pyrrolidine using vinyl bromides exemplified by the total synthesis of naturally occurring (+)-maackiamine (thus establishing its configuration as (R)). In this way, the full scope and limitations of the methodology are delineated.

0 Followers
 · 
25 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of trityl-based photolabile hydroxyl protecting groups have been examined. These PPGs evolve from the traditional acid-labile trityl protecting group with proper electron-donating substituents. Structure-reactivity relationships have been explored. A m-dimethylamino group is crucial to achieve high photochemical deprotection efficiency. The o-hydroxyl group in 8 greatly improves the yield of the photochemical deprotection reaction, compared with the corresponding o-methoxyl-substituted counterpart 7. However, comparison between the photoreactions of 9 and 11 does not show similar structural relevance. The PPG in ether 1 (i.e., DMATr group) is structurally simple and easy to prepare and install. Its deprotection can be successfully carried out with irradiation of sunlight without requirement of photochemical devices.
    Full-text · Article · Jun 2011 · The Journal of Organic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present chapter describes isolation, biogenetic proposals, and syntheses of the natural products 1-4 and 10-11 with a pyrrolo[2,1-a]-isoquinoline framework. Moreover, the syntheses of some structural analogs are discussed. The pyrrolo[2,1-a]isoquinolines are of interest due to their promising biological activities. For crispine A (1), many total syntheses have been reported and for trolline (3), only three. Only one total synthesis has been reported for each of the following natural products: peyoglutam (10), mescalotam (11), and the antitumor active crispine B (2). Some of the pyrrolo[2,1-a]isoquinoline alkaloids have not been synthesized yet. The following three tables summarize the synthetic efforts toward crispine A (1) (Table 1: racemic syntheses; Table 2: enantioselective syntheses) and trolline (3) (Table 3).
    No preview · Article · Dec 2011 · The Alkaloids Chemistry and Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study describes a very efficient strategy for the synthesis of two new bridged-nicotine analogues. Starting from either 4- or 3-chloropyridine the desired tricyclic ring systems are accessed in just three steps in 23% and 40% overall yield, respectively.
    Full-text · Article · Feb 2012 · Tetrahedron
Show more