Automated HPLC Assay for Urinary Collagen Cross-links: Effect of Age, Menopause, and Metabolic Bone Diseases

Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital, CH-4031 Basel, Switzerland.
Clinical Chemistry (Impact Factor: 7.91). 09/2008; 54(9):1546-53. DOI: 10.1373/clinchem.2008.105262
Source: PubMed


The pyridinium cross-links pyridinoline (PYD) and deoxypyridinoline (DPD) are established markers of bone resorption. We evaluated the analytical and clinical performance of a commercially available PYD HPLC assay and established reference intervals in children and adults.
We used a commercially available reagent set (Chromsystems Instruments & Chemicals) to measure PYD and DPD in 319 healthy controls (156 premenopausal women, 80 healthy men, and 83 healthy children age 1 month to 14 years) and 397 patients with metabolic bone diseases (postmenopausal osteoporosis, n = 175; male osteoporosis, n = 176; hyperparathyroidism, n = 17; hyperthyroidism, n = 19; Paget disease, n = 10).
The mean intraassay and interassay CVs were <6% and <8% for both PYD and DPD, respectively. The reference interval was constant for premenopausal women in the age group 20-49 years. In men, cross-link values peaked at 20-29 years and decreased thereafter. Women with postmenopausal osteoporosis had significantly higher PYD (51%) and DPD (58%) values compared to premenopausal women. Similar results were found in osteoporotic men. In children the highest values were found in the first weeks and months after birth, followed by a decrease of 50%-60% at age 11-14 years. In metabolic bone diseases cross-link concentrations were significantly increased. The DPD:PYD ratio (mean value approximately 0.2) was remarkably constant in all populations evaluated.
The automated HPLC assay is a precise and convenient method for PYD and DPD measurement. We established reference intervals for adult women and men and for children up to 14 years old. The cross-link concentrations we determined by use of this HPLC method confirm its clinical value in enabling identification of increased bone resorption in patients with metabolic bone diseases.

Download full-text


Available from: Cecilia Giunta
  • Source
    • "Total urinary pyridinolines were measured as described [27] [28] and were expressed as the ratio of lysyl pyridinoline (LP) to hydroxylysyl pyridinoline (HP). Primary dermal fibroblast cultures were established from skin biopsies by routine procedures. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Brittle cornea syndrome (BCS; MIM 229200) is an autosomal recessive generalized connective tissue disorder caused by mutations in ZNF469 and PRDM5. It is characterized by extreme thinning and fragility of the cornea that may rupture in the absence of significant trauma leading to blindness. Keratoconus or keratoglobus, high myopia, blue sclerae, hyperelasticity of the skin without excessive fragility, and hypermobility of the small joints are additional features of BCS. Transcriptional regulation of extracellular matrix components, particularly of fibrillar collagens, by PRDM5 and ZNF469 suggests that they might be part of the same pathway, the disruption of which is likely to cause the features of BCS. In the present study, we have performed molecular analysis of a cohort of 23 BCS affected patients on both ZNF469 and PRDM5, including those who were clinically reported previously [1]; the clinical description of three additional patients is reported in detail. We identified either homozygous or compound heterozygous mutations in ZNF469 in 18 patients while, 4 were found to be homozygous for PRDM5 mutations. In one single patient a mutation in neither ZNF469 nor PRDM5 was identified. Furthermore, we report the 12 novel ZNF469 variants identified in our patient cohort, and show evidence that ZNF469 is a single exon rather than a two exon gene.
    Full-text · Article · Apr 2013 · Molecular Genetics and Metabolism
  • Source
    • "Hyperthyroidism is one of the conditions associated with bone loss and increased fracture risk [4,23,24]. Biochemical markers that reflect remodeling can be assessed in blood or urine [9,13]. In the present work, we aimed to study some markers of bone turnover and bone mineral density and their relation to hyperthyroidism with different etiology. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperthyroidism is accompanied by osteoporosis with higher incidence of fracture rates. The present work aimed to study bone status in hyperthyroidism and to elucidate the impact of severity, duration, and etiology of hyperthyroidism on biochemical markers of bone turnover and bone mineral density (BMD). Fifty-two male patients with hyperthyroidism, 31 with Graves' disease (GD) and 21 with toxic multinodular goiter (TNG), with an age ranging from 23 to 65 years were included, together with 25 healthy euthyroid men with matched age as a control group. In addition to full clinical examination, patients and controls were subjected to measurement of BMD using dual-energy X-ray absorptiometery scanning of the lower half of the left radius. Also, some biochemical markers of bone turnover were done for all patients and controls. Biochemical markers of bone turnover: included serum bone specific alkaline phosphatase, osteocalcin, carboxy terminal telopeptide of type l collagen also, urinary deoxypyridinoline cross-links (DXP), urinary DXP/urinary creatinine ratio and urinary calcium/urinary creatinine ratio were significantly higher in patients with GD and TNG compared to controls (P < 0.01). However, there was non-significant difference in these parameters between GD and TNG patients (P > 0.05). BMD was significantly lower in GD and TNG compared to controls, but the Z-score of BMD at the lower half of the left radius in patients with GD (-1.7 ± 0.5 SD) was not significantly different from those with TNG (-1.6 ± 0.6 SD) (>0.05). There was significant positive correlation between free T3 and free T4 with biochemical markers of bone turnover, but negative correlation between TSH and those biochemical markers of bone turnover. The duration of the thyrotoxic state positively correlated with the assessed bone turnover markers, but it is negatively correlated with the Z-score of BMD in the studied hyperthyroid patients (r = -0.68, P < 0.0001). Men with hyperthyroidism have significant bone loss with higher biochemical markers of bone turnover. The severity and the duration of the thyrotoxic state are directly related to the derangement of biochemical markers of bone turnover and bone loss.
    Full-text · Article · Aug 2011 · BMC Endocrine Disorders
  • Source
    • "Total urinary pyridinolines were measured as described [9,11] and were expressed as the ratio of lysyl pyridinoline (LP) to hydroxylysyl pyridinoline (HP). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA) (OMIM 225400) is a rare inheritable connective tissue disorder characterized by a deficiency of collagen lysyl hydroxylase 1 (LH1; EC due to mutations in PLOD1. Biochemically this results in underhydroxylation of collagen lysyl residues and, hence, an abnormal pattern of lysyl pyridinoline (LP) and hydroxylysyl pyridinoline (HP) crosslinks excreted in the urine. Clinically the disorder is characterized by hypotonia and kyphoscoliosis at birth, joint hypermobility, and skin hyperelasticity and fragility. Severe hypotonia usually leads to delay in gross motor development, whereas cognitive development is reported to be normal. We describe the clinical, biochemical and molecular characterisation, as well as electron microscopy findings of skin, in 15 patients newly diagnosed with this rare type of Ehlers-Danlos syndrome. Age at diagnosis ranged from 5 months to 27 years, with only 1/3 of the patients been diagnosed correctly in the first year of life. A similar disease frequency was found in females and males, however a broad disease severity spectrum (intra- and interfamilial), independent of molecular background or biochemical phenotype, was observed. Kyphoscoliosis, one of the main clinical features was not present at birth in 4 patients. Importantly we also noted the occurrence of vascular rupture antenatally and postnatally, as well as developmental delay in 5 patients. In view of these findings we propose that EDS VIA is a highly variable clinical entity, presenting with a broad clinical spectrum, which may also be associated with cognitive delay and an increased risk for vascular events. Genotype/phenotype association studies and additional molecular investigations in more extended EDS VIA populations will be necessary to further elucidate the cause of the variability of the disease severity.
    Full-text · Article · Jun 2011 · Orphanet Journal of Rare Diseases
Show more