Article

IFN Regulatory Factor-1 Negatively Regulates CD4+ CD25+ Regulatory T Cell Differentiation by Repressing Foxp3 Expression

Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
The Journal of Immunology (Impact Factor: 4.92). 08/2008; 181(3):1673-82. DOI: 10.4049/jimmunol.181.3.1673
Source: PubMed

ABSTRACT

Regulatory T (Treg) cells are critical in inducing and maintaining tolerance. Despite progress in understanding the basis of immune tolerance, mechanisms and molecules involved in the generation of Treg cells remain poorly understood. IFN regulatory factor (IRF)-1 is a pleiotropic transcription factor implicated in the regulation of various immune processes. In this study, we report that IRF-1 negatively regulates CD4(+)CD25(+) Treg cell development and function by specifically repressing Foxp3 expression. IRF-1-deficient (IRF-1(-/-)) mice showed a selective and marked increase of highly activated and differentiated CD4(+)CD25(+)Foxp3(+) Treg cells in thymus and in all peripheral lymphoid organs. Furthermore, IRF-1(-/-) CD4(+)CD25(-) T cells showed extremely high bent to differentiate into CD4(+)CD25(+)Foxp3(+) Treg cells, whereas restoring IRF-1 expression in IRF-1(-/-) CD4(+)CD25(-) T cells impaired their differentiation into CD25(+)Foxp3(+) cells. Functionally, both isolated and TGF-beta-induced CD4(+)CD25(+) Treg cells from IRF-1(-/-) mice exhibited more increased suppressive activity than wild-type Treg cells. Such phenotype and functional characteristics were explained at a mechanistic level by the finding that IRF-1 binds a highly conserved IRF consensus element sequence (IRF-E) in the foxp3 gene promoter in vivo and negatively regulates its transcriptional activity. We conclude that IRF-1 is a key negative regulator of CD4(+)CD25(+) Treg cells through direct repression of Foxp3 expression.

Download full-text

Full-text

Available from: Emilia Stellacci
  • Source
    • "Murine studies have demonstrated that IRF-1 negatively regulates Treg development by repression of the Treg transcription factor Foxp3 [47]. As mentioned above, Tregs are elevated in HESN, but the causes of this expansion are unknown. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant immune activation is a strong correlate of HIV disease progression, but little is known about how immune activation alters susceptibility to HIV infection. Susceptibility to HIV infection varies between individuals, but the immunological determinants of HIV transmission are not well understood. Here, we present evidence from studies of HIV transmission in the context of clinical trials and HIV-exposed seronegative (HESN) cohorts that implicates elevated immune activation as a risk factor for acquiring HIV. We propose a model of protection from infection based on a phenotype of low baseline immune activation referred to as immune quiescence. Immune quiescence is evidenced by reduced expression of T cell activation markers, low levels of generalized gene transcription and low levels of proinflammatory cytokine and chemokine production in the periphery and genital mucosa of HESN. Since HIV preferentially replicates in activated CD4+ T cells, immune quiescence may protect against infection by limiting HIV target cell availability. Although the determinants of immune quiescence are unclear, several potential factors have been identified that may be involved in driving this phenotype. HESN were shown to have elevated proportions of regulatory T cells (Tregs), which are known to suppress T cell activation. Likewise, proteins involved in controlling inflammation in the genital tract have been found to be elevated in HESN. Furthermore, expression of interferon regulatory factor 1 (IRF-1) is reduced in HESN as a consequence of genetic polymorphisms and differential epigenetic regulation. Since IRF-1 is an important regulator of immune responses, it may play a role in maintaining immune quiescence. Based on this model, we propose a novel avenue for HIV prevention targeted based on reducing host mucosal immune activation.
    Full-text · Article · Nov 2013 · Retrovirology
  • Source
    • "The down-regulation of IRF in our findings is supported by a previous study in IRF-1-/- mice, which have high levels of CD4+CD25+FoxP3+ Tregs, where the expression of FoxP3 was negatively regulated by IRF-1 [22]. We found that the expression of FoxP3 and CTLA-4 increased in parallel with the suppressive effect of Tregs when CD4+ T cells were co-cultured with DCs in the presence of resistin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistin, a member of adipokine family, is known to be involved in the modulation of immune responses including inflammatory activity. Interestingly, resistin is secreted by adipocytes in mice and rats whereas it is secreted by leukocytes in humans. However, the mechanism behind the effect of resistin on the expansion of regulatory T cells (Tregs) remains poorly understood. Therefore, we examined regulatory effect of resistin on the induction and cellular modification of Tregs. Both protein and mRNA expression of FoxP3, a representative marker of Tregs, increased in a dose-dependent manner when peripheral blood mononuclear cells were treated with resistin. At the same time, resistin had no direct effect on the induction of FoxP3 in CD4+ T cells, suggesting an indirect role through other cells type(s). Since DCs are an important player in the differentiation of T cells, we focused on the role of DCs in the modulation of Tregs by resistin. Resistin suppressed the expression of interferon regulatory factor (IRF)-1 and its target cytokines, IL-6, IL-23p19 and IL-12p40, in DCs. Furthermore, FoxP3 expression is increased in CD4+ T cells when co-cultured with DCs and concomitantly treated with resistin. Our results suggest that resistin induces expansion of functional Tregs only when co-cultured with DCs.
    Full-text · Article · Jun 2010 · BMC Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T (Treg) cells are critical in inducing and maintaining tolerance. Despite progress in understanding the basis of immune tolerance, mechanisms and molecules involved in the generation of Treg cells remain poorly understood. IFN regulatory factor (IRF)-1 is a pleiotropic transcription factor implicated in the regulation of various immune processes. In this study, we report that IRF-1 negatively regulates CD4(+)CD25(+) Treg cell development and function by specifically repressing Foxp3 expression. IRF-1-deficient (IRF-1(-/-)) mice showed a selective and marked increase of highly activated and differentiated CD4(+)CD25(+)Foxp3(+) Treg cells in thymus and in all peripheral lymphoid organs. Furthermore, IRF-1(-/-) CD4(+)CD25(-) T cells showed extremely high bent to differentiate into CD4(+)CD25(+)Foxp3(+) Treg cells, whereas restoring IRF-1 expression in IRF-1(-/-) CD4(+)CD25(-) T cells impaired their differentiation into CD25(+)Foxp3(+) cells. Functionally, both isolated and TGF-beta-induced CD4(+)CD25(+) Treg cells from IRF-1(-/-) mice exhibited more increased suppressive activity than wild-type Treg cells. Such phenotype and functional characteristics were explained at a mechanistic level by the finding that IRF-1 binds a highly conserved IRF consensus element sequence (IRF-E) in the foxp3 gene promoter in vivo and negatively regulates its transcriptional activity. We conclude that IRF-1 is a key negative regulator of CD4(+)CD25(+) Treg cells through direct repression of Foxp3 expression.
    Full-text · Article · Aug 2008 · The Journal of Immunology
Show more