Single histidine-substituted cardiac troponin I confers protection from age-related systolic and diastolic dysfunction

Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 E. Catherine Street, 7727 Medical Science II, Ann Arbor, MI 48109-0622, USA.
Cardiovascular Research (Impact Factor: 5.94). 11/2008; 80(2):209-18. DOI: 10.1093/cvr/cvn198
Source: PubMed


Contractile dysfunction associated with myocardial ischaemia is a significant cause of morbidity and mortality in the elderly. Strategies to protect the aged heart from ischaemia-mediated pump failure are needed. We hypothesized that troponin I-mediated augmentation of myofilament calcium sensitivity would protect cardiac function in aged mice.
To address this, we investigated transgenic (Tg) mice expressing a histidine-substituted form of adult cardiac troponin I (cTnI A164H), which increases myofilament calcium sensitivity in a pH-dependent manner. Serial echocardiography revealed that Tg hearts showed significantly improved systolic function at 4 months, which was sustained for 2 years based on ejection fraction and velocity of circumferential fibre shortening. Age-related diastolic dysfunction was also attenuated in Tg mice as assessed by Doppler measurements of the mitral valve inflow and lateral annulus Doppler tissue imaging. During acute hypoxia, cardiac contractility significantly improved in aged Tg mice made evident by increased stroke volume, end systolic pressure, and +dP/dt compared with non-transgenic mice.
This study shows that increasing myofilament function by means of a pH-responsive histidine button engineered into cTnI results in enhanced baseline heart function in Tg mice over their lifetime, and during acute hypoxia improves survival in aged mice by maintaining cardiac contractility.

Download full-text


Available from: Todd Herron
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, urinary metabolic profiles of patients with heart failure (HF) and healthy individuals were analyzed by LC-TOF–MS. Both reversed-phase chromatography and hydrophilic interaction chromatography were used to separate the endogenous metabolites in urine. Partial least-squares to latent structure-discriminant analysis was used for discriminating HF patients from healthy persons and the selection of potential biomarkers. The results suggested that the combination of LC–MS and multivariate statistical analysis could be used for HF diagnosis. The MS/MS experiments were carried out to identify the potential biomarkers which are important for the contribution to the discrimination. As a result, 12 potential biomarkers for HF were identified and the related metabolic pathways were studied.
    No preview · Article · Feb 2013 · Chromatographia
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acquired and inherited diseases of the heart represent a major health care issue in this country and throughout the World. Clinical medicine has made important advancements in the past quarter century to enable several effective treatment regimes for cardiac patients. Nevertheless, it is apparent that even with the best care, current treatment strategies and therapeutics are inadequate for treating heart disease, leaving it arguably the most pressing health issue today. In this context it is important to seek new approaches to redress the functional deficits in failing myocardium. This review focuses on several recent gene, cell and chemical-based experimental therapeutics currently being developed in the laboratory for potential translation to patient care. For example, new advances in bio-sensing inducible gene expression systems offer the potential for designer cardio-protective proteins to be expressed only during hypoxia/ischemia in the heart. Stem cells continue to offer the promise of cardiac repair, and some recent advances are discussed here. In addition, discovery and applications of synthetic polymers are presented as a chemical-based strategy for acute and chronic treatment of diseased and failing cardiac tissue. Collectively, these approaches serve as the front lines in basic biomedical research, with an eye toward translation of these findings to clinically meaningful applications in cardiac disease.
    Full-text · Article · Dec 2008 · Journal of Cardiovascular Translational Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular acidosis is a profound negative regulator of myocardial performance. We hypothesized that titrating myofilament calcium sensitivity by a single histidine substituted cardiac troponin I (A164H) would protect the whole animal physiological response to acidosis in vivo. To experimentally induce severe hypercapnic acidosis, mice were exposed to a 40% CO(2) challenge. By echocardiography, it was found that systolic function and ventricular geometry were maintained in cTnI A164H transgenic (Tg) mice. By contrast, non-Tg (Ntg) littermates experienced rapid and marked cardiac decompensation during this same challenge. For detailed hemodymanic assessment, Millar pressure-conductance catheterization was performed while animals were treated with a beta-blocker, esmolol, during a severe hypercapnic acidosis challenge. Survival and load-independent measures of contractility were significantly greater in Tg vs. Ntg mice. This assay showed that Ntg mice had 100% mortality within 5 min of acidosis. By contrast, systolic and diastolic function were protected in Tg mice during acidosis, and they had 100% survival. This study shows that, independent of any beta-adrenergic compensation, myofilament-based molecular manipulation of inotropy by histidine-modified troponin I maintains cardiac inotropic and lusitropic performance and markedly improves survival during severe acidosis in vivo.
    No preview · Article · Feb 2009 · The FASEB Journal
Show more