Article

Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments

Authors:
  • Swedish Orthopedic Institute
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The objective of the present study was to determine if reactive oxygen species (ROS) are required as secondary messengers for fibronectin fragment-stimulated matrix metalloproteinase (MMP) production in human articular chondrocytes. Cultured cells were stimulated with 25 microg/ml of the alpha5beta1 integrin-binding 110-kDa fibronectin fragment (FN-f) in the presence and absence of various antioxidants including Mn(III) tetrakis(4-benzoic acid)porphyrin (MnTBAP). FN-f stimulation significantly increased intracellular levels of ROS in articular chondrocytes. Pretreatment of cells with 250 microM MnTBAP or 40 mM N-acetyl-L-cysteine, but not inhibitors of nitric oxide synthase, completely prevented FN-f-stimulated MMP-3, -10, and -13 production. MnTBAP also blocked FN-f-induced phosphorylation of the MAP kinases and NF-kappaB-associated proteins and blocked activation of an NF-kappaB promoter-reporter construct. Overexpression of catalase, superoxide dismutase, or glutathione peroxidase also inhibited FN-f-stimulated MMP-13 production. Preincubation of chondrocytes with rotenone, an inhibitor of the mitochondrial electron transport chain, or nordihydroguaiaretic acid (NDGA), a selective 5-lipoxygenase inhibitor, partially prevented FN-f-stimulated MMP-13 production and decreased MAP kinase and NF-kappaB phosphorylation. These results show that increased production of ROS but not nitric oxide as obligatory secondary messengers in the chondrocyte FN-f signaling pathway leads to the increased production of MMPs, including MMP-13.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... However, the FN function during cartilage injury and regeneration has not been studied, although its potential role for cartilage regeneration is controversially discussed. While some authors found FN to promote ECM remodelling and chondrocyte survival and proliferation [12,13], others observed tissue-damaging pro-inflammatory effects induced by FN fragments [14][15][16][17]. ...
... It was also shown that α5β1 is heavily up-regulated in the OA cartilage [19]. FN fragments including the FNIII10 region have received particular attention as they bind α5β1 integrins on chondrocytes leading to rapid elevation of intracellular levels of reactive oxygen species and the production of MMP-13 that in turn further accelerates cartilage degradation [14][15][16][17]. Moreover, inhibition of α5 integrin expression was shown to arrest cartilage destruction induced by FN fragments in in vitro explant experiments [16]. ...
... Remodelling of the articular cartilage ECM after injury is accompanied by an increased expression and/or activity of MMPs, which degrade deteriorated ECM and thereby allow production of a new functional matrix [2]. We focused our analysis on MMP-3 and MMP-13 (Fig 5), whose expression plays a major role in cartilage matrix degradation during OA and was shown to be stimulated by integrin bound FN fragments [4,14,17]. The moderate mechanical load produced by forced exercise did not influence MMP-13 and MMP-3 levels in Fn1 wt/wt mice, whereas MMP-3 expression increased 3-fold in articular cartilage derived from Fn1 RGE/mice (Fig 5A). ...
Article
Full-text available
The balance between synthesis and degradation of the cartilage extracellular matrix is severely altered in osteoarthritis, where degradation predominates. One reason for this imbalance is believed to be due to the ligation of the α5β1 integrin, the classic fibronectin (FN) receptor, with soluble FN fragments instead of insoluble FN fibrils, which induces matrix metalloproteinase (MMP) expression. Our objective was to determine whether the lack of α5β1-FN binding influences cartilage morphogenesis in vivo and whether non-ligated α5β1 protects or aggravates the course of osteoarthritis in mice. We engineered mice (Col2a-Cre;Fn1RGE/fl), whose chondrocytes express an α5β1 binding-deficient FN, by substituting the aspartic acid of the RGD cell-binding motif with a glutamic acid (FN-RGE). At an age of 5 months the knee joints were stressed either by forced exercise (moderate mechanical load) or by partially resecting the meniscus followed by forced exercise (high mechanical load). Sections of femoral articular knees were analysed by Safranin-O staining and by immunofluorescence to determine tissue morphology, extracellular matrix proteins and matrix metalloproteinase expression. The articular cartilage from untrained control and Col2a-Cre;Fn1RGE/fl mice was normal, while the exposure to high mechanical load induced osteoarthritis characterized by proteoglycan and collagen type II loss. In the Col2a-Cre;Fn1RGE/fl articular cartilage osteoarthritis progressed significantly faster than in wild type mice. Mechanistically, we observed increased expression of MMP-13 and MMP-3 metalloproteinases in FN-RGE expressing articular cartilage, which severely affected matrix remodelling. Our results underscore the critical role of FN-α5β1 adhesion as ECM sensor in circumstances of articular cartilage regeneration.
... These actions are mediated by the MAPK pathway (ERK1/2, c-Jun N-terminal kinases (JNK) and p38) [77] and NF-B [78], respectively. Additionally, FN-f stimulation of 5 1 leads to increased ROS levels in chondrocytes, whereas inhibition of ROS decreases NF-B and MMPs production [79]. ...
... Integrins connect the ECM directly with chondrocytes and their action upon chondrocyte metabolism changes according to the levels of AC degradation. For example, integrin 5 1 by itself [76,74] integrates mechanical cues differently than when it is attached to intact forms of structural proteins, then favouring inflammation [54] and further catabolism [79]. Integrin 5 1 is key to activate the expression of IL-4 in chondrocytes, a cornerstone event in the preservation of chondrocyte homeostasis [64,59]. ...
... The matrix metalloproteinases (MMPs), especially MMP-3 as well as the family of peptidases -a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), especially ADAMTS-4, are thought to be the key enzymes involved in these processes, since they can degrade most components of cartilage in physiological and pathological situations [4,17,20,22,23,24]. We previously reported that MMP-3 and ADAMTS-4 were significantly expressed in the plasma of untreated JIA patients [22,23]. ...
... Furthermore, the presence of oxidative stress, which is expressed by the increased activity of free-radicals and by weakening the antioxidative system, was reported by us in JIA patients. It is important that the excessive proteolytic enzymes and reactive oxygen species (ROS) production are key mechanisms by which cartilage matrix destruction occurs during the development of arthritis [4,17,20,22,23,24]. Hence, every action which can limit the effect of the destructive factors may inhibit both the development and clinical consequences of JIA. ...
Article
Full-text available
Aim: Progranulin (PGRN) plays an important role in cartilage metabolism. The disturbed interaction between PGRN and glycosaminoglycans (GAGs), as biochemical indicators of aggrecan modification, may contribute to articular damage observed in the course of juvenile idiopathic arthritis (JIA). Hence, the aim of this study was to assess quantitatively the level of progranulin in children with JIA as well as to evaluate the correlation between PGRN and GAGs, MMP-3 (matrix metalloproteinase 3), ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) as well as the total oxidative status (TOS) and the total antioxidative status (TAS). We have also evaluated interactions between PGRN and inflammatory and anemia indicators, i.e. C-reactive protein (CRP), and hemoglobin (Hb), respectively. Material/Methods: The PRGN level was measured using the immunoenzymatic method, in blind tested coded plasma samples, obtained from both JIA patients before and after treatment and from healthy children. Results: Increased (p
... We have previously shown that exposure of human articular chondrocytes to fragments of the extracellular matrix protein fibronectin stimulates JNK signaling in chondrocytes in a ROS-dependent fashion (22). Fibronectin fragments (FN-f), including fragments containing the Arg-Gly-Asp (RGD) cell binding sequence, are found in the articular cartilage and synovial fluid of patients with arthritis, likely the result of increased activity of matrix degrading enzymes (23,24). ...
... The cell culture experiments in the present study were performed in primary cultures of human articular chondrocytes with the anticipation that results are transferable to other cell types where JNK signaling plays an important physiologic or pathologic role. Chondrocytes were chosen due to previous studies suggesting that JNK is activated in cartilage from patients with osteoarthritis (46) and activation of MAP kinases, including JNK, promotes MMP expression in response to matrix fragments such as FN-f (47,48) that require ROS as secondary messengers (22,28). In addition, studies with JNK2 knockout mice indicate a role for JNK2 in cartilage destruction in osteoarthritis (49) and collagen-induced arthritis (50), a model of rheumatoid arthritis in humans. ...
Article
Full-text available
Reactive oxygen species (ROS), in particular H2O2, regulate intracellular signaling through reversible oxidation of reactive protein thiols present in a number of kinases and phosphatases. H2O2 has been shown to regulate mitogen-activated protein kinase (MAPK) signaling depending on the cellular context. We report here that in human articular chondrocytes, the MAPK family member c-Jun N-terminal kinase 2 (JNK2) is activated by fibronectin fragments and low physiological levels of H2O2 and inhibited by oxidation due to elevated levels of H2O2 The kinase activity of affinity-purified, phosphorylated JNK2 from cultured chondrocytes was reversibly inhibited by 5-20 μM H2O2 Using dimedone-based chemical probes that react specifically with sulfenylated cysteines (RSOH), we identified Cys-222 in JNK2, a residue not conserved in JNK1 or JNK3, as a redox-reactive site. MS analysis of human recombinant JNK2 also detected further oxidation at Cys-222 and other cysteines to sulfinic (RSO2H) or sulfonic (RSO3H) acid. H2O2 treatment of JNK2 resulted in detectable levels of peptides containing intramolecular disulfides between Cys-222 and either Cys-213 or Cys-177, without evidence of dimer formation. Substitution of Cys-222 to alanine rendered JNK2 insensitive to H2O2 inhibition, unlike C177A and C213A variants. Two other JNK2 variants, C116A and C163A, were also resistant to oxidative inhibition. Cumulatively, these findings indicate differential regulation of JNK2 signaling dependent on H2O2 levels and point to key cysteine residues regulating JNK2 activity. As levels of intracellular H2O2 rise, a switch occurs from activation to inhibition of JNK2 activity, linking JNK2 regulation to the redox status of the cell.
... The FN-f composed of domains 7-10 of fibronectin is known to bind to the α5β1 integrin receptor and to activate MAP kinase signaling, resulting in the up-regulation of a number of cytokine, chemokine, and MMP genes (9)(10)(11)(12). Previous studies have shown that activation of chondrocyte catabolic signaling by FN-f requires reactive oxygen species (ROS) as second messengers; however, the mechanism by which ROS regulate chondrocyte signaling is not completely understood (13). ...
... Early studies in synovial fibroblasts demonstrated that ROS were required for signaling generated by activation of the α5β1 integrin that resulted in collagenase expression (45), and antioxidants were shown to block the cartilage catabolic effects of FN-f (46). Treatment of chondrocytes with FN-f has been shown to trigger a burst of ROS within the cells, and FN-f-induced MMP production has been shown to be inhibited by pretreatment with anti-oxidants or by overexpression of antioxidant enzymes, including catalase and glutathione peroxidase, which primarily target H 2 O 2 (13). ...
Article
Oxidative posttranslational modifications of intracellular proteins can potentially regulate signaling pathways relevant to cartilage destruction in arthritis. In this study, oxidation of cysteine residues to form sulfenic acid (S-sulfenylation) was examined in osteoarthritic (OA) chondrocytes and investigated in normal chondrocytes as a mechanism by which fragments of fibronectin (FN-f) stimulate chondrocyte catabolic signaling. Chondrocytes isolated from normal and osteoarthritic human articular cartilage were analyzed using analogs of dimedone which specifically and irreversibly react with protein S-sulfenylated cysteines. Global S-sulfenylation was measured in cell lysates with and without FN-f stimulation by immunoblotting and in fixed cells by confocal microscopy. S-sulfenylation in specific proteins was identified by mass spectroscopy and confirmed by immunoblotting. Src activity was measured in live cells using a FRET biosensor. Proteins in chondrocytes isolated from osteoarthritic cartilage were found to have elevated basal levels of S-sulfenylation relative to those of chondrocytes from normal cartilage. Treatment of normal chondrocytes with FN-f induced increased levels of S-sulfenylation in multiple proteins that included the tyrosine kinase Src. FN-f treatment also increased levels of Src activity. Pre-treatment with dimedone to alter S-sulfenylation function or with Src kinase inhibitors inhibited FN-f induced MMP-13 production. These results demonstrate for the first time the presence of oxidative post-translational modification of proteins in human articular chondrocytes by S-sulfenylation. Due to the ability to regulate the activity of a number of cell signaling pathways, including catabolic mediators induced by fibronectin fragments, S-sulfenylation may contribute to cartilage destruction in osteoarthritis and deserves further investigation. This article is protected by copyright. All rights reserved. © 2015, American College of Rheumatology.
... All immunoblotting experiments were repeated at least 3 times with cells from different donors. For analysis of HB-EGF levels in conditioned media in response to fibronectin fragment (FN-f), we stripped and probed for MMP-2 as a control which in previous studies we had found did not change with FN-f treatment 10 . ...
... We found that treatment of chondrocytes with FN-f increased HB-EGF expression and resulted in increased release of HB-EGF into the conditioned media. We have previously shown that FN-f stimulates production of multiple MMPs by chondrocytes including MMP-3 10 and more recently found that they also stimulate meniscal cells to produce MMPs that would be capable of cleaving and releasing HB-EGF 15 . ...
Article
We determined if the epidermal growth factor receptor ligand HB-EGF is produced in cartilage and if it regulates chondrocyte anabolic or catabolic activity. HB-EGF expression was measured by quantitative PCR using RNA isolated from mouse knee joint tissues and from normal and OA human chondrocytes. Immunohistochemistry was performed on normal and OA human cartilage and meniscus sections. Cultured chondrocytes were treated with fibronectin fragments (FN-f) as a catabolic stimulus and osteogenic protein 1 (OP-1) as an anabolic stimulus. Effects of HB-EGF on cell signaling were analyzed by immunoblotting of selected signaling proteins. MMP-13 was measured in conditioned media, proteoglycan synthesis was measured by sulfate incorporation, and matrix gene expression by quantitative PCR. HB-EGF expression was increased in 12-month old mice at 8 weeks after surgery to induce OA and increased amounts of HB-EGF were noted in human articular cartilage from OA knees. FN-f stimulated chondrocyte HB-EGF expression and HB-EGF stimulated chondrocyte MMP-13 production. However, HB-EGF was not required for FN-f stimulation of MMP-13 production. HB-EGF activated the ERK and p38 MAP kinases and stimulated phosphorylation of Smad1 at an inhibitory serine site which was associated with inhibition of OP-1 mediated proteoglycan synthesis and reduced aggrecan (ACAN) but not COL2A1 expression. HB-EGF is a new factor identified in OA cartilage that promotes chondrocyte catabolic activity while inhibiting anabolic activity suggesting it could contribute to the catabolic-anabolic imbalance seen in OA cartilage. Copyright © 2015. Published by Elsevier Ltd.
... Furthermore, ROS promote the epithelial-to-mesenchymal (EMT) transition of cancer cells through cytoskeleton rearrangement induced by Rac1 (Rac family small GTPase 1), RhoA (Ras homolog family member A) and FAK (focal adhesion kinase) [22][23][24]. Moreover, ROS induce NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) phosphorylation, increase matrix metalloproteinase (MMP) expression, and enhance extracellular matrix degradation [25,26]. Also, ROS suppress HIF-1α degradation and induce angiogenesis [27][28][29]. ...
Article
Full-text available
Mitochondrial dysfunction is an interesting therapeutic target to help reduce cancer deaths, and the use of bioactive compounds has emerged as a novel and safe approach to solve this problem. Here, we discuss the information available related to phlorotannins, a type of polyphenol present in brown seaweeds that reportedly functions as antioxidants/pro-oxidants and anti-inflammatory and anti-tumorigenic agents. Specifically, available evidence indicates that dieckol and phloroglucinol promote mitochondrial membrane depolarization and mitochondria-dependent apoptosis. Phlorotannins also reduce pro-tumorigenic, -inflammatory, and -angiogenic signaling mechanisms involving RAS/MAPK/ERK, PI3K/Akt/mTOR, NF-κB, and VEGF. In doing so, they inhibit pathways that favor cancer development and progression. Unfortunately, these compounds are rather labile and, therefore, this review also summarizes approaches permitting the encapsulation of bioactive compounds, like phlorotannins, and their subsequent oral administration as novel and non-invasive therapeutic alternatives for cancer treatment.
... Some authors reported that these fragments promote ECM remodelling and have cell-protective effects on chondrocytes (Refs 209,280). Contrary to that, others showed that fibronectin fragments promote the progression of OA by stimulating the expression of MMPs and catabolic cytokines ( Refs 175,187,281). ...
Article
Full-text available
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
... It has been reported that RAC1-dependent ROS production regulates the expressions of MMPs. In human articular chondrocytes, stimulation of integrin-α5β1 by fragments of the ECM protein fibronectin increases intracellular levels of ROS and leads to increased MMP-13 expression by activating NF-κB phosphorylation [132]. The antioxidant agent NAC can completely block this regulatory cascade. ...
Article
Full-text available
Reactive oxygen species (ROS) serve as cell signaling molecules generated in oxidative metabolism and are associated with a number of human diseases. The reprogramming of redox metabolism induces abnormal accumulation of ROS in cancer cells. It has been widely accepted that ROS play opposite roles in tumor growth, metastasis and apoptosis according to their different distributions, concentrations and durations in specific subcellular structures. These double-edged roles in cancer progression include the ROS-dependent malignant transformation and the oxidative stress-induced cell death. In this review, we summarize the notable literatures on ROS generation and scavenging, and discuss the related signal transduction networks and corresponding anticancer therapies. There is no doubt that an improved understanding of the sophisticated mechanism of redox biology is imperative to conquer cancer.
... Subsequently to 3-MST inhibition, we showed that H 2 O 2 exacerbated chondrocyte mineralization (Fig. 4b) while the ROS scavenger NAC reverted this effect. Other studies exist in the literature that supports an important role or ROS in triggering chondrocyte calcification [48] and metalloproteases production [49,50], ultimately leading to OA progression. The fact that preventing oxidative stress is beneficial in reducing chondrocyte calcification, was also highlighted in a previous study from our group, in which we demonstrated that the H 2 S metabolite thiosulfate was able to decrease ROS production and calcification in chondrocytes [37]. ...
Article
Full-text available
Background: Osteoarthritis (OA) is characterized by the formation and deposition of calcium-containing crystals in joint tissues, but the underlying mechanisms are poorly understood. The gasotransmitter hydrogen sulfide (H2S) has been implicated in mineralization but has never been studied in OA. Here, we investigated the role of the H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) in cartilage calcification and OA development. Methods: 3-MST expression was analyzed in cartilage from patients with different OA degrees, and in cartilage stimulated with hydroxyapatite (HA) crystals. The modulation of 3-MST expression in vivo was studied in the meniscectomy (MNX) model of murine OA, by comparing sham-operated to MNX knee cartilage. The role of 3-MST was investigated by quantifying joint calcification and cartilage degradation in WT and 3-MST-/- meniscectomized knees. Chondrocyte mineralization in vitro was measured in WT and 3-MST-/- cells. Finally, the effect of oxidative stress on 3-MST expression and chondrocyte mineralization was investigated. Results: 3-MST expression in human cartilage negatively correlated with calcification and OA severity, and diminished upon HA stimulation. In accordance, cartilage from menisectomized OA knees revealed decreased 3-MST if compared to sham-operated healthy knees. Moreover, 3-MST-/- mice showed exacerbated joint calcification and OA severity if compared to WT mice. In vitro, genetic or pharmacologic inhibition of 3-MST in chondrocytes resulted in enhanced mineralization and IL-6 secretion. Finally, oxidative stress decreased 3-MST expression and increased chondrocyte mineralization, maybe via induction of pro-mineralizing genes. Conclusion: 3-MST-generated H2S protects against joint calcification and experimental OA. Enhancing H2S production in chondrocytes may represent a potential disease modifier to treat OA.
... Protein fragments, such as fibronectin fragments (FNfs), are the equivalents of the plant polypeptide-based DAMPs in mammals, and they are perceived by Toll-like receptors (TLRs), like TLR4 [79]. Of note, FN-fs were found to stimulate ROS production in human articular chondrocytes [80]. ...
Article
Full-text available
The plant innate immune system has two major branches, the pathogen-triggered immunity and the effector-triggered immunity (ETI). The effectors are molecules released by plant attackers to evade host immunity. In addition to the foreign intruders, plants possess endogenous instigators produced in response to general cellular injury termed as damage-associated molecular patterns (DAMPs). In plants, DAMPs or alarmins are released by damaged, stressed, or dying cells following abiotic stress such as radiation, oxidative and drought stresses. In turn, a cascade of downstream signaling events is initiated leading to the upregulation of defense or response-related genes. In the present study, we have investigated more thoroughly the conservation status of the molecular mechanisms implicated in the danger signaling primarily in plants. Towards this direction, we have performed in silico phylogenetic and structural analyses of the associated biomolecules in taxonomically diverse plant species. On the basis of our results, the defense mechanisms appear to be largely conserved within the plant kingdom. Of note, the sequence and/or function of several components of these mechanisms was found to be conserved in animals, as well. At the same time, the molecules involved in plant defense were found to form a dense protein-protein interaction (PPi) network, suggesting a crosstalk between the various defense mechanisms to a variety of stresses, like oxidative stress.
... The effect of treatment with FN-f was also examined. FN-f have been identified in OA cartilage and synovial fluid and have been shown to activate cartilage matrix degradation by stimulation of MAP kinase pathways 16,24e27 that requires the presence of ROS 16,28 . To examine pro-anabolic cell signaling responses that are modulated by ROS, we chose to treat cells with IGF-1 due to our prior findings demonstrating that IGF-1 stimulates cartilage matrix synthesis and promotes chondrocyte survival through activation of the Akt signaling pathway in talar chondrocytes 11,29,30 an effect which is inhibited by ROS 9,15 . ...
Article
Objective: To compare key intracellular redox-regulated signaling pathways in chondrocytes derived from knee joint femoral cartilage and ankle joint talar cartilage in order to determine if differences exist that might contribute to the lower prevalence of ankle osteoarthritis (OA). Methods: Femoral and talar chondrocytes were treated with H2O2 generators (menadione or 2-3-dimethoxy-1,4-napthoquinone (DMNQ), fragments of fibronectin (FN-f)) to stimulate MAP kinase signaling (MAPK), or with IGF-1 to stimulate the Akt signaling pathway. Hyperoxidation of the peroxiredoxins, used as a measure of redox status, and phosphorylation of proteins pertinent to MAPK (p38, ERK, JNK, c-Jun) and Akt (Akt, PRAS40) signaling cascades were detected by immunoblotting. Results: Treatment of femoral and talar chondrocytes with menadione, DMNQ or FN-f led to a time dependent increase in extracellular-regulated kinase (ERK) and p38 phosphorylation. DMNQ and FN-f stimulation enhanced phosphorylation of JNK and its downstream substrate, c-Jun. Menadione treatment did not stimulate JNK activity but hyperoxidized the peroxiredoxins and inhibited IGF-1-induced Akt activation. In all experiments, chondrocytes derived from the femur and talar joints displayed comparable MAP kinase responses after treatment with various catabolic stimuli, as well as similar Akt signaling responses after IGF-1 treatment. Conclusions: MAP kinase and Akt signaling in response to factors that modulate the intracellular redox status were similar in chondrocytes from knee and ankle joints suggesting that redox signaling differences do not explain differences in OA prevalence. Talar chondrocytes, when isolated from their native matrix, can be used to examine redox-regulated cell signaling events relevant to OA in either joint.
... In this regard, Kawai et al. 47 showed that IL-1-treated rats developed arthritis which was accompanied by statistically higher free iron levels in synovial fluid compared to saline-treated controls. There is consensus that elevated levels of reactive oxygen and nitrogen species directly damage chondrocytes, for example by lipid peroxidation 48 or DNA damage 49 and lead to disturbed collagen type II and GAG synthesis as well as to enhanced expression of matrix metalloproteinases (MMPs) [50][51][52] . Moreover, ROS, especially hydrogen peroxide, are described to fragment link proteins and to inhibit association of proteoglycan monomers with other ECM components (e.g. ...
Article
Full-text available
Osteoarthritis (OA) is one of the most common causes of disability and represents a major socio-economic burden. Despite intensive research, the molecular mechanisms responsible for the initiation and progression of OA remain inconclusive. In recent years experimental findings revealed elevated levels of reactive oxygen species (ROS) as a major factor contributing to the onset and progression of OA. Hence, we designed a hydrostatic pressure bioreactor system that is capable of stimulating cartilage cell cultures with elevated ROS levels. Increased ROS levels in the media did not only lead to an inhibition of glycosaminoglycans and collagen II formation but also to a reduction of already formed glycosaminoglycans and collagen II in chondrogenic mesenchymal stem cell pellet cultures. These effects were associated with the elevated activity of matrix metalloproteinases as well as the increased expression of several inflammatory cytokines. ROS activated different signaling pathways including PI3K/Akt and MAPK/ERK which are known to be involved in OA initiation and progression. Utilizing the presented bioreactor system, an OA in vitro model based on the generation of ROS was developed that enables the further investigation of ROS effects on cartilage degradation but can also be used as a versatile tool for anti-oxidative drug testing.
... After exposure to IL-1β, ECM in chondrocytes is degraded in a NADPH oxidase-dependent manner [127]. In addition, ROS act as intermediates in the chondrocyte FN-f signaling pathway, resulting in increased MMP-13 production [128]. H 2 O 2 and ox-LDL stimulate collagen X expression through VEGF and RUNX2 upregulation, playing an important role in the terminal hypertrophic differentiation of OA chondrocytes [129]. ...
Article
Human cells have to deal with the constant production of reactive oxygen species (ROS). Although ROS overproduction might be harmful to cell biology, there are plenty of data showing that moderate levels of ROS control gene expression by maintaining redox signaling. Osteoarthritis (OA) is the most common joint disorder with a multi-factorial etiology including overproduction of ROS. ROS overproduction in OA modifies intracellular signaling, chondrocyte life cycle, metabolism of cartilage matrix and contributes to synovial inflammation and dysfunction of the subchondral bone. In arthritic tissues, the NF-κB signaling pathway can be activated by pro-inflammatory cytokines, mechanical stress, and extracellular matrix degradation products. This activation results in regulation of expression of many cytokines, inflammatory mediators, transcription factors, and several matrix-degrading enzymes. Overall, NF-κB signaling affects cartilage matrix remodeling, chondrocyte apoptosis, synovial inflammation, and has indirect stimulatory effects on downstream regulators of terminal chondrocyte differentiation. Interaction between redox signaling and NF-κB transcription factors seems to play a distinctive role in OA pathogenesis.
... In chondrocytes, intracellular ROS regulate extracellular matrix synthesis, but elevated ROS production can drive chondrocytes towards a hypertrophic state 36 . Additionally, both high and low intracellular ROS concentrations can result in elevated MMP levels, leading to OA-like cartilage degradation 22,37,38 . Due to this dual role of ROS, their levels are controlled by antioxidants such as SOD which are constitutively expressed 39 . ...
Article
Full-text available
Objective: Synovitis in collagenase-induced osteoarthritis (CiOA) is driven by locally released S100A8/A9 proteins and enhances joint destruction. S100A8/A9 can induce reactive oxygen species (ROS) release by phagocytes in OA synovium via neutrophil cytosolic factor-1 (Ncf1)-regulated NOX2 activation. In the present study we investigated whether NOX2-derived ROS affect joint pathology during CiOA. Methods: CiOA was induced in knee joints of wild type (WT) and Ncf1-deficient (Ncf1**) mice. Synovial gene expression of NOX2-subunits was measured with qRT-PCR. Joint pathology was assessed using histology and immunohistochemistry for aggrecan neo-epitope VDIPEN. Levels of inflammatory proteins were measured with Luminex or ELISA. Phagocytes in synovium, blood, bone marrow and spleen were analyzed with flow cytometry. ROS release by phagocytes was measured with a ROS detection kit. Results: CiOA induction in knee joints of WT mice caused significantly increased synovial gene expression of NOX2 subunits. On day 7 of CiOA, cartilage damage and MMP activity, as measured by VDIPEN, were comparable between WT and Ncf1** mice. Synovial thickening, synovial S100A8/A9 levels and percentages of synovial macrophages, PMNs, and monocytes were not different, as were levels of inflammatory mediators in serum and phagocyte percentages in blood, bone marrow and spleen. On day 42 of CiOA, synovitis, cartilage damage, and osteophyte formation in Ncf1** mice were unaltered when compared to WT mice. ROS detection confirmed that Ncf1** PMNs lack functional NOX2, but in vitro macrophages showed ROS production, suggesting activation of compensatory mechanisms. Conclusions: Absence of Ncf1-mediated ROS production does not alter joint pathology in CiOA.
... Although low physiologic levels of ROS promote IGF-1 signaling, we have found that the levels of ROS that occur under oxidative stress conditions inhibit IGF-1-mediated Akt activation (necessary for chondrocyte matrix synthesis and survival) and increase activation of catabolic mitogen-activated protein kinase pathways (29)(30)(31). Chondrocyte ROS-mediated signaling that regulates MMP expression has been noted in response to cytokines including interleukin 1β and tumor necrosis factor α (32-35) and to stimulation of chondrocytes by fibronectin fragments that have been found to accumulate in OA cartilage (36). Unlike anabolic signaling that declines with age, we found that chondrocytes from older adults become more responsive to stimulation by interleukin-1 and fibronectin fragments (37). ...
Article
Osteoarthritis (OA) is the most common form of arthritis and a significant cause of pain and disability in older adults. Among the risk factors for OA, age is the most prominent. This review will discuss the relationship between aging and the development of OA, with a particular focus on mechanisms relevant to cartilage degeneration and the role of excessive levels of reactive oxygen species. Rather than just causing random oxidative damage, an increase in reactive oxygen species that leads to oxidative stress disrupts specific cell signaling pathways. This disruption in cell signaling affects the ability to maintain the cartilage extracellular matrix and eventually causes cell death. By understanding the specific cell signaling pathways that lead to OA through altered redox signaling, novel targets will be discovered that will be an advance over the current non-targeted anti-oxidant approach that has not been successful in treating chronic diseases of aging such as OA.
... Interestingly, all these modulations (levels of ROS, mitochondrial fission and MMP3) are interlinked, and inhibition of mitochondrial fission may result in a positive directional response, i.e., improved function after IR injury. For example, enhanced reactive oxygen species (ROS) were demonstrated to cause mitochondrial fission and MMP3 induction (Del Carlo et al. 2007;Wu et al. 2011). The enhanced mitochondrial fission could further enhance ROS production through reduced mitochondrial function (Yu et al. 2008). ...
Article
Full-text available
The aim of this study is to determine the effects of mitochondrial division inhibitor 1 (Mdivi‐1), the mitochondrial fission inhibitor, on the angiogenic profiles after the ischemia reperfusion injury (IR injury) in female mice. Female mice were treated with Mdivi‐1 inhibitor, 2 days prior, on the day of IR injury and 2 days after IR injury, for a period of 5 days. Both control and treatment groups underwent 30 min of ischemia and 72 h of reperfusion. On the day 3, mice were sacrificed and the ischemic and nonischemic portions of heart tissue were collected. Relative levels of 53 angiogenesis‐related proteins were quantified simultaneously using Angiogenic arrays. Heart function was evaluated before and after 72 h of IR injury. Mdivi‐1 treatment ameliorated IR induced functional deterioration with positive angiogenic profile. The seminal changes include suppression of Matrix metalloproteinase (MMP3), tissue inhibitor of metalloproteases (TIMP1) and chemokine (C‐X‐C motif) ligand 10 (CXCL10) levels and prevention of connexin 43 (Cx43) loss and downregulation in the antioxidant enzyme levels. These changes are correlated with enhanced endothelial progenitor cell marker (cluster of differentiation (CD31), endothelial‐specific receptor tyrosine kinase (Tek), fMS‐like tyrosine kinase 4 (Flt4) and kinase insert domain protein receptor (Kdr)) presence. Our study is the first to report the role of mitochondrial dynamics in regulation of myocardial IR‐induced angiogenic responses. Inhibition of excessive mitochondrial fission after IR injury ameliorated heart dysfunction and conferred positive angiogenic response. In addition, there were improvements in the preservation of Cx43 levels and oxidative stress handling along with suppression of apoptosis activation. The findings will aid in shaping the rational drug development process for the prevention of ischemic heart disease, especially in females.
... При ОА резорбция ВКМ сопровождается повышенной продукцией СР [23] вследствие колебаний парциального давления кислорода, ускорения тканевого метаболизма, постоянных избыточных нагрузок на сустав и повышенной продукции провоспалительных цитокинов, таких как ИЛ1β и ФНОα [23,24]. Это приводит к индукции апоптоза [25], продукции ММП [26,27] и гипертрофии хондроцитов, которая ассоциируется с экспрессией коллагена Х типа [28]. Более того, СР способны индуцировать деплецию внутриклеточного АТФ вследствие инактивации ГАФДГ [29]. ...
Article
Full-text available
Objective: to study the molecular mechanisms underlying the suppression of collagenase activity in the presence of deferoxamine (DFO) in articular cartilage explants from patients with osteoarthritis (OA). Subjects and methods. The knee joint cartilage obtained during arthroplasty from 33 patients (mean age, 61.8±10.3 years) with OA, and that derived at autopsy from 25 people (mean age 40±6.1 years) without this disease were investigated. The cartilage was cultured in the presence of 10 μm DFO. The gene expression in the cartilage explants was determined by real-time reverse transcriptase and polymerase chain reaction. Results and discussion. The reduced collagenase activity in the presence of DFO in the articular cartilage explants from patients with OA, which had been shown earlier, was accompanied by the significantly inhibited expression of matrix metalloproteinases 1 and 13 and cathepsin K, which had collagenase activity, as well as the marker of hypertrophic chondrocytes, such as X type collagen, and the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. DFO did not change the expression levels of the phosphoglucomutase and pyruvate kinase genes responsible for the production of adenosine triphosphate (ATP) during glycolysis and the glucose transporter Glut 1. On the contrary, the expression of the genes associated with ATP generation in the tricarboxylic acid cycle: isocitrate dehydrogenase, succinate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and adenosine monophosphate- activated protein kinase (AMPK) significantly increased. The expression of AMPK in the articular cartilage of patients with OA was significantly lower than that in healthy individuals. Conclusion. Inhibition of collagen cleavage in the presence of DFO in the articular cartilage explants from OA patients, which was accompanied by a considerable decrease in the expression of the proteases responsible for degradation of the extracellular matrix, proinflammatory cytokines and chondrocytes hypertrophy, was due to the enhanced activity of mitochondrial oxidative phosphorylation in the chondrocytes.
... Recently, Wood et al. have demonstrated that the presence of oxidative post-translational modification of proteins in human articular chondrocytes by S-sulfenylation may contribute to cartilage destruction in OA [162]. ROS also act as secondary messengers in the chondrocyte FN-f signaling pathway that leads to the increased production of MMPs, including MMP-13 [163]. ICE is involved in the maturation of IL-1β, which is a key player in the induction of cartilage catabolism. ...
Article
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signalling processes, chondrocytes senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signalling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
... During L. salmonis infection, fish induces the generation of ROS, as evidenced by increased thioredoxin in the skin of pink salmon (Oncorhynchus gorbuscha) [19]. Furthermore, in pink salmon infected with L. salmonis was observed an increase of expression metalloproteinase 9 and 13 responsible of tissue reparation [20], increasing the ROS generation [21,22]. Another widely reported effect in salmonids infected by L. salmonis is the upregulation of pro-inflammatory cytokines and serum amyloid A genes [3,4,6,19] that are also responsible to stimulate the ROS production [23]. ...
... In the last decades a number of orthopedics in Europe have begun to treat acute and chronic knee arthritis with intra articular or peri articular insufflations of small volume of ozone (5-10 ml with ozone concentration from 5 to 15 micrograms/ml of gas) with a rapid pain relief, decongestion, disappearance of edema, and increased mobility. Ozone, when injected in the knee, dissolves in the synovial fluid that contains antioxidants like SOD, GSH, vitamin E, PUFA and proteins and generates ROS and LOP which in turn are responsible for: 1) A possible inactivation and inhibition of the release of proteolytic enzymes and proinflammatory cytokines; 2) An induction of the proliferation of chondrocytes and fibroblasts; 3) A release of the synthesis of antioxidant enzymes (SOD,GSH-Px and catalase) as adaptive response of chronic oxidative stress; 4) A release of immunosuppressive cytokines such as TGF beta1 and Interleukin 10 (IL-10) that modulate the synthesis of integrins and stimulate the synthesis of matrix protein such as collagen and proteoglycans [32,33]. ...
Article
Full-text available
In this review the Authors will explain the pathophysiological mechanism of action of the oxygen ozone therapy in the treatment of the disc herniation and knee arthritis. The ozone injected in the intervertebral disc or in the joint causes a rapid oxidative reaction with the organic compound of disc and synovial fluid and a late response due the formation of various second messengers that are able to stimulate the endogenous production of antioxidants through a hormetic production of hydrogen peroxide. As a consequence of the intradiscal or intrarticular injection of ozone we noted a dramatic decrease of the pain and a reduction of the local and systemic inflammation. The ozone therapy is cost-effective and should be used to improve recovery of the disc herniation and knee arthritis.
... Oxidative damage to cartilage has been identified as a factor in osteoarthritis (5,17). We have previously found that extracellular superoxide dismutase (ECSOD) is highly expressed in human cartilage and decreased in OA cartilage and joint fluid, with footprints of oxidative damage (nitrotyrosine) present in extracellular matrix of cartilage (6,25,26). ...
Article
Full-text available
Osteoarthritis (OA) is associated with increased mechanical damage to joint cartilage. We have previously found that extracellular superoxide dismutase (ECSOD) is decreased in OA joint fluid and cartilage suggesting oxidant damage may play a role in OA. We explored the effect of forced running as a surrogate for mechanical damage in a transgenic mouse with reduced ECSOD tissue binding. Transgenic mice heterozygous (Het) for the human ECSOD R213G polymorphism and 129 SvEv (wild-type, WT) mice were exposed to forced running on a treadmill for 45 min/day, five days per week over eight weeks. At the end of the running protocol knee joint tissue was obtained for histology, immunohistochemistry, and protein analysis. Sedentary Het and WT mice were maintained for comparison. Whole tibias were studied for bone morphometry, finite element analysis and mechanical testing. Forced running improved joint histology in WT mice. However, when ECSOD levels were reduced, this beneficial effect with running was lost. Het ECSOD runner mice had significantly worse histology scores compared to WT runner mice. Runner mice for both strains had increased bone strength in response to the running protocol, while Het mice showed evidence of a less robust bone structure in both runners and untrained mice. Reduced levels of ECSOD in cartilage produced joint damage when joints were stressed by forced running. The bone tissues responded to increased loading with hypertrophy, regardless of mouse strain. We conclude that ECSOD plays an important role in protecting cartilage from damage caused by mechanical loading. Copyright © 2014, Journal of Applied Physiology.
... Breakdown oligosaccharides derived from hyaluronic acid (HA) have been shown to promote ADAMTS-4, -5 expression through their capacity to interact with CD44 receptors upon chondrocytes (Ariyoshi et al., 2012). Another example for the influence of matrix breakdown fragments in the exacerbation of pro-catabolic enzymes is the capacity of fibronectin fragments to bind cell-surface integrins and enhanced MMP and reactive oxygen species (ROS) in chondrocytes by regulating NFjB and MAPK activity (Del Carlo et al., 2007). ...
Article
Full-text available
Abstract The progressive nature of osteoarthritis is manifested by the dynamic increase of degenerated articular cartilage, which is one of the major characteristics of this debilitating disease. As articular chondrocytes become exposed to inflammatory stress they enter a pro-catabolic state, which leads to the secretion and activation of a plethora of proteases. In aim to detect the disease before massive areas of cartilage are destroyed, various protein and non-protein biomarkers have been examined in bodily fluids and correlated with disease severity. This review will discuss the widely research extracellular degraded products as well as products generated by affected cellular pathways upon increased protease activity. While extracellular components could be more abundant, cleaved cellular proteins are less abundant and are suggested to possess a significant effect on cell metabolism and cartilage secretome. Subtle changes in cell secretome could potentially act as indicators of the chondrocyte metabolic and biological state. Therefore, it is envisioned that combined biomarkers composed of both cell and extracellular-degraded secretome could provide a valuable platform for testing drug efficacy to halt disease progression at its early stages.
... For the 110-120 kD fragment that contains the RGD cell binding region these include PKCδ activation of proline-rich tyrosine kinase 2 (PYK2) and downstream activation of the MAP kinases ERK1/2, JNK1/2, and p38α leading to increased activity of NFκB and AP-1 (Forsyth et al., 2002;Im et al., 2003;Loeser et al., 2003;Pulai et al., 2005). This signaling also requires the production of reactive oxygen species (Del Carlo et al., 2007) and the presence of active Rac1, a small GTPase (Long et al., 2013) (Fig. 1). Using the 29-kD N-terminal fragment as a stimulus, inhibitor studies found that MAP kinases as well as Src were required for stimulation of NO production (Gemba et al., 2002). ...
Article
Full-text available
The integrin family of cell adhesion receptors plays a major role in mediating interactions between cells and the extracellular matrix. Normal adult articular chondrocytes express α1β1, α3β1, α5β1, α10β1, αVβ1, αVβ3, and αVβ5 integrins, while chondrocytes from osteoarthritic tissue also express α2β1, α4β1, α6β1. These integrins bind a host of cartilage extracellular matrix (ECM) proteins, most notably fibronectin and collagen types II and VI, which provide signals that regulate cell proliferation, survival, differentiation, and matrix remodeling. By initiating signals in response to mechanical forces, chondrocyte integrins also serve as mechanotransducers. When the cartilage matrix is damaged in osteoarthritis, fragments of fibronectin are generated that signal through the α5β1 integrin to activate a pro-inflammatory and pro-catabolic response which, if left unchecked, could contribute to progressive matrix degradation. The cell signaling pathways activated in response to excessive mechanical signals and to fibronectin fragments are being unraveled and may represent useful therapeutic targets for slowing or stopping progressive matrix destruction in arthritis.
Article
Several disease-modifying osteoarthritis (OA) drugs have emerged, but none have been approved for clinical use due to their systemic side effects, short half-life, and rapid clearance from the joints. Nordihydroguaiaretic...
Article
Full-text available
Integrins are key regulators of cell-matrix interactions during joint development and joint tissue homeostasis, as well as in the development of osteoarthritis (OA). The signalling cascades initiated by the interactions of integrins with a complex network of extracellular matrix (ECM) components and intracellular adaptor proteins orchestrate cellular responses necessary for maintaining joint tissue integrity. Dysregulated integrin signalling, triggered by matrix degradation products such as matrikines, disrupts this delicate balance, tipping the scales towards an environment conducive to OA pathogenesis. The interplay between integrin signalling and growth factor pathways further underscores the multifaceted nature of OA. Moreover, emerging insights into the role of endocytic trafficking in regulating integrin signalling add a new layer of complexity to the understanding of OA development. To harness the therapeutic potential of targeting integrins for mitigation of OA, comprehensive understanding of their molecular mechanisms across joint tissues is imperative. Ultimately, deciphering the complexities of integrin signalling will advance the ability to treat OA and alleviate its global burden.
Chapter
In this chapter entitled “Cancer Metastasis, ROS/Redox Signaling, and PCD Resistance/Redox Metabolism,” initially metastasis link to cell adhesion marker kinetics and resistance has been discussed during cancer development. Metastasis development steps have been discussed with the help of EMT/MET changes. The role of the TME has been discussed in the contribution of stroma cells to EMT. The role of matrix metalloproteinases (MMPs) in cell proliferation, survival, immune response, and angiogenesis in addition to invasion has been discussed. Dormancy and reactivation phase have been taken up at the molecular level, and the involvement of CSCs to metastasis has also been discussed. Redox regulation in metastasis development has been discussed with the involvement and regulation of specially HIF-1, TGF-b, NFkB factors. Metastatic cell survival and PCD resistance have been addressed in cancer resistance development. Redox metabolic characteristics of the cancer cell link to metastasis resistance have been discussed.
Article
Full-text available
Mechanical cues sensed by integrins induce cells to produce proteases to remodel the extracellular matrix. Excessive protease production occurs in many degenerative diseases, including osteoarthritis, in which articular cartilage degradation is associated with the genesis of matrix protein fragments that can activate integrins. We investigated the mechanisms by which integrin signals may promote protease production in response to matrix changes in osteoarthritis. Using a fragment of the matrix protein fibronectin (FN) to activate the α5β1 integrin in primary human chondrocytes, we found that endocytosis of the integrin and FN fragment complex drove the production of the matrix metalloproteinase MMP-13. Activation of α5β1 by the FN fragment, but not by intact FN, was accompanied by reactive oxygen species (ROS) production initially at the cell surface, then in early endosomes. These ROS-producing endosomes (called redoxosomes) contained the integrin-FN fragment complex, the ROS-producing enzyme NADPH oxidase 2 (NOX2), and SRC, a redox-regulated kinase that promotes MMP-13 production. In contrast, intact FN was endocytosed and trafficked to recycling endosomes without inducing ROS production. Articular cartilage from patients with osteoarthritis showed increased amounts of SRC and the NOX2 complex component p67 phox . Furthermore, we observed enhanced localization of SRC and p67 phox at early endosomes, suggesting that redoxosomes could transmit and sustain integrin signaling in response to matrix damage. This signaling mechanism not only amplifies the production of matrix-degrading proteases but also establishes a self-perpetuating cycle that contributes to the ongoing degradation of cartilage matrix in osteoarthritis.
Article
Fibronectin (FN) fragments stimulate catabolic signaling, and, by binding to integrins, they induce chondrocytes to increase the production of matrix metalloproteinases, including MMP-13. In this issue of Science Signaling , Miao et al. reveal that internalization of a FN fragment, but not intact FN, by α5β1 integrin results in the formation of ROS-producing endosomes (redoxosomes) through which chondrocytes detect and respond to damaged matrix by producing more MMP-13.
Article
Background Integrins are heterodimeric transmembrane receptors that mediate a variety of biological function and plays a critical role in osteoarthritis (OA) pathogenesis, which may provide new targets for the development of OA therapies. However, the roles of integrins in different stages of OA remain elusive. Objectives This study aimed to synthesize all published preclinical evidence on the roles of integrin receptors in different stages of OA to identify the potential target for drug development in alleviating OA pathogenesis. Methods Major electronic databases were used to identify related original articles. The methodological quality of all included studies was appraised using the SYRCLE risk of bias tool. We used the generic inverse variance with random effects model to calculate standardized mean differences (SMDs) and 95% confidence interval (CI). Results Seventeen studies were included in this systematic review. Integrin α5β1 increased the histopathological score both in early [SMD, 6.39; 95%CI (2.90, 9.87); p = 0.0003] and late [SMD, 3.41; 95%CI (2.44, 4.38); p < 0.00001] stage of OA. Integrin α5β1 also increased the core catabolic factors like MMP-3, IL-1β, and TNF-α. Interestingly, the inactivation of α5β1 integrin did not change the histopathological score (p = 0.84). Similarly, β1 integrin notably increased histopathological score both stages of OA [early; SMD, 7.13; 95%CI (2.01, 12.24); p = 0.006]; [late; SMD, 10.25; 95%CI (5.11, 15.39); p < 0.0001], and increased the MMP-13 levels. However, integrin β1 was upregulated at the early stage and downregulated at the late stage of OA. Furthermore, α2β1 integrin significantly increased histopathological score [SMD, 3.14; 95%CI (2.18, 4.10); p < 0.00001] and MMP-13 [SMD, 2.24; 95%CI (0.07, 4.41); p = 0.04]. Deactivating integrin α1β1 increased histopathological score in late [SMD, 1.53; 95%CI (0.80, 2.26); p < 0.0001], but not in early [SMD, 0.90; 95%CI (-1.65, 3.45); p = 0.49] stage of OA. Conclusion This study provides evidence that α5β1, α2β1, and α1β1 integrin might be the potential target for future drug development in alleviating OA pathogenesis. Further work is required to establish our findings through activating/deactivating these receptors in different stages of OA.
Article
Mechanical stimuli have fundamental roles in articular cartilage during health and disease. Chondrocytes respond to the physical properties of the cartilage extracellular matrix (ECM) and the mechanical forces exerted on them during joint loading. In osteoarthritis (OA), catabolic processes degrade the functional ECM and the composition and viscoelastic properties of the ECM produced by chondrocytes are altered. The abnormal loading environment created by these alterations propagates cell dysfunction and inflammation. Chondrocytes sense their physical environment via an array of mechanosensitive receptors and channels that activate a complex network of downstream signalling pathways to regulate several cell processes central to OA pathology. Advances in understanding the complex roles of specific mechanosignalling mechanisms in healthy and OA cartilage have highlighted molecular processes that can be therapeutically targeted to interrupt pathological feedback loops. The potential for combining these mechanosignalling targets with the rapidly expanding field of smart mechanoresponsive biomaterials and delivery systems is an emerging paradigm in OA treatment. The continued advances in this field have the potential to enable restoration of healthy mechanical microenvironments and signalling through the development of precision therapeutics, mechanoregulated biomaterials and drug systems in the near future.
Article
Full-text available
Osteoarthritis (OA) is a common joint disease that ultimately causes physical disability and imposes an economic burden on society. Cartilage destruction plays a key role in the development of OA. Vorinostat is an oral histone deacetylase (HDAC) inhibitor and has been used for the treatment of T‐cell lymphoma. Previous studies have reported the anti‐inflammatory effect of HDAC inhibitors in both in vivo and in vitro models. However, it is unknown whether vorinostat exerts a protective effect in OA. In this study, our results demonstrate that treatment with vorinostat prevents interleukin 1α (IL‐1α)‐induced reduction of type II collagen at both gene and protein levels. Treatment with vorinostat reduced the IL‐1α‐induced production of mitochondrial reactive oxygen species (ROS) in T/C‐28a2 cells. Additionally, vorinostat rescued the IL‐1α‐induced decrease in the expression of the collagen type II a1 (Col2a1) gene and the expression of Sry‐related HMG box 9 (SOX‐9). Importantly, we found that vorinostat inhibited the expression of matrix metalloproteinase‐13 (MMP‐13), which is responsible for the degradation of type II collagen. Furthermore, vorinostat suppressed the expression of E74‐like factor 3 (ELF3), which is a key transcription factor that plays a pivotal role in the IL‐1α‐induced reduction of type II collagen. Also, the overexpression of ELF3 abolished the protective effects of vorinostat against IL‐1α‐induced loss of type 2 collagen by inhibiting the expression of SOX‐9 whilst increasing the expression of MMP‐13. In conclusion, our findings suggest that vorinostat might prevent cartilage destruction by rescuing the reduction of type II collagen, mediated by the suppression of ELF3.
Article
Full-text available
Objective In previous studies, we determined an association between increased serum and articular cartilage levels of CCL2 with osteoarthritis (OA) progression, cartilage damage and increased MMP13 in cartilage. Here we analyzed CCL2 downstream signaling mediators that lead to gene expression of cartilage catabolic markers, in healthy and OA human articular chondrocytes. Design Human articular chondrocytes obtained from healthy or OA subjects were treated with or without recombinant human CCL2; cell lysates or mRNA were collected for immunoblotting or qRT-PCR. For pathway analysis, chondrocytes were pre-incubated with an inhibitor of CCR2 (the unique CCL2 receptor), ERK inhibitor or p38 inhibitor prior to CCL2 treatment. Results CCL2 treatment of both healthy and OA chondrocytes activated ERK and p38 via CCR2. In healthy chondrocytes, short (6h) and prolonged (24-72h) CCL2 treatments led to Ccr2, Mmp-1, Mmp-3, Mmp-13 and Timp1 upregulation. In OA chondrocytes, CCL2 induced expression of Ccr2, Mmp-1 and Mmp-3, but not Mmp1 and Timp1, and only following longer treatments (72h). In both healthy and OA chondrocytes, the CCL2-mediated upregulation of Ccr2 and cartilage catabolic markers was mediated by ERK and p38 signaling. Conclusions The triggering of the CCL2/CCR2 axis in articular chondrocytes activates specific MAPK pathways leading to gene expression of cartilage degrading enzymes. However, some differences in the response to CCL2 stimulation are detected in healthy vs OA chondrocytes with respect to the number of activated genes and to the time of exposure to CCL2, suggesting that CCL2 action in articular cartilage may be dependent on OA stage and severity.
Article
Osteoarthritis (OA) is a chronic joint disease that results in progressive cartilage destruction and subsequently joint dysfunction. Growing evidence indicates beneficial impact of balneological interventions in OA; however, their mechanisms of action are still unclear. Here, we evaluate the effect of balneotherapy in sulfurous water in an OA experimental model. Experimental OA was induced in Wistar rats by transection of the medial collateral ligament and removal of the medial meniscus of the left knee. Animals were randomized into three groups: non-treated (control) and balneotherapy using sulfurous water (SW) or tap water (TW). Macroscopic evaluation was performed, as well as evaluation of pain levels and analysis of motor function by rotarod test. Histopathological changes in articular cartilage and synovium were also evaluated. The presence of matrix metalloproteinase-13 (MMP-13) and oxidative damage markers was assessed by immunohistochemistry. Joint destabilization induced joint thickening, loss of joint flexion, and increased levels of pain. At day 40, animals from SW group presented lower pain levels than those from control group. Experimental OA also affected motor function. Balneotherapy in sulfur-rich water significantly improved joint mobility in relation to that in tap water. Besides, we observed that cartilage deterioration was lower in SW group than in the other two groups. Likewise, SW group showed reduced levels of MMP-13 in the cartilage. Conversely, we failed to observe any modulation on synovial inflammation. Finally, balneotherapy in sulfurous water diminished the presence of oxidative damage markers. Our results suggest the beneficial effect of balneotherapy in sulfur-rich water on an experimental model of OA, showing a reduced cartilage destruction and oxidative damage. Thus, these findings support the use of balneotherapy as a non-pharmacological treatment in OA.
Article
Full-text available
High-risk Human Papillomavirus infections are responsible for anogenital and oropharyngeal cancers. Alternative splicing is an important mechanism controlling HPV16 gene expression. Modulation in the splice pattern leads to polycistronic HPV16 early transcripts encoding a full length E6 oncoprotein or truncated E6 proteins, commonly named E6*. Spliced E6*I transcripts are the most abundant RNAs produced in HPV-related cancers. To date, the biological function of the E6*I isoform remains controversial. In this study, we identified, by RNA sequencing, cellular targets deregulated by E6*I, among which genes related to ROS metabolism. Concomitantly, E6*I-overexpressing cells display high levels of ROS. However, co-overexpression of both E6 and E6*I has no effect on ROS production. In HPV16-infected cells expressing different E6/E6*I levels, we show that the newly identified targets CCL2 and RAC2 are increased by E6*I but decreased by E6 expression, suggesting that E6 abrogates the effect of E6*I. Taken together, these data support the idea that E6*I acts independently of E6 to increase ROS production and that E6 has the ability to counteract the effects of E6*I. This asks the question of how E6*I can be considered separately of E6 in the natural history of HPV16 infection.
Article
Full-text available
Objective: Mitochondrial dysfunction, oxidative stress and chondrocyte death are important contributors to the development and pathogenesis of osteoarthritis (OA). In this study, we determined the expression and role of Parkin in the clearance of damaged/dysfunctional mitochondria, regulation of ROS levels and chondrocyte survival under pathological conditions. Methods: Human chondrocytes were from the unaffected area of knee OA cartilage (n=12) and were stimulated with IL-1β to mimic pathological conditions. Mitochondrial membrane depolarization and ROS levels were determined using specific dyes and flow cytometry. Autophagy was determined by Western blotting for ATG5, Beclin1, immunofluorescence staining and confocal microscopy. Gene expression was determined by qRT-PCR. siRNA, wild-type and mutant Parkin plasmids were transfected using Amaxa system. Apoptosis was determined by PI staining of chondrocytes and TUNEL assay. Results: IL-1β-stimulated OA chondrocytes showed high levels of ROS generation, mitochondrial membrane damage, accumulation of damaged mitochondria and higher incidence of apoptosis. IL-1β stimulation of chondrocytes with depleted Parkin expression resulted in sustained high levels of ROS, accumulation of damaged/dysfunctional mitochondria and enhanced apoptosis. Parkin translocation to depolarized/damaged mitochondria and recruitment of p62/SQSTM1 was required for the elimination of damaged/dysfunctional mitochondria in IL-1β-stimulated OA chondrocytes. Importantly we demonstrate that Parkin elimination of depolarized/damaged mitochondria required the Parkin ubiquitin ligase activity and resulted in reduced ROS levels and inhibition of apoptosis in OA chondrocytes under pathological conditions. Conclusions: Our data demonstrates that Parkin functions to eliminate depolarized/damaged mitochondria in chondrocytes which is necessary for mitochondrial quality control, regulation of ROS levels and chondrocyte survival under pathological conditions.
Article
Objective Aberrant Wnt signaling may contribute to osteoarthritis (OA) but the Wnt family members involved have not been fully identified. The purpose of this study was to investigate the role of Wnt5a as a potential mediator of cartilage destruction in OA. Design Immunohistochemistry to detect Wnt5a was performed using normal and OA human articular cartilage. Cultured normal human chondrocytes were treated with fibronectin fragments (FN-f) as a catabolic stimulus or recombinant Wnt5a protein with or without pretreatment using a panel of signaling inhibitors. Expression of Wnt5a, anabolic genes and catabolic genes were determined by quantitative real-time PCR. Production of Wnt5a protein and matrix metalloproteinases (MMPs) as well as activation of signaling proteins were analyzed by immunoblotting. Results Wnt5a was present in human articular cartilage with OA changes and its expression and secretion were increased in FN-f stimulated chondrocytes. FN-f stimulated Wnt5a production through the JNK and ERK pathways. Wnt5a reduced aggrecan gene expression after 48 hours of treatment. Wnt5a seemed to promote MMP1, -3, and -13 expression as well as MMP1 and MMP13 protein production in normal human chondrocytes. Wnt5a inhibitor peptides did not affect FN-f induced MMP production. Wnt5a activated β-catenin independent signaling including calmodulin-dependent protein kinase II (CaMKII), JNK, p38, ERK1/2, p65 and Akt. Inhibition of JNK, p38, ERK, PI-3 kinase and CaMKII by specific signaling inhibitors suppressed Wnt5a mediated MMP1 and MMP13 production. Conclusions Wnt5a is present in human OA cartilage and can promote chondrocyte catabolic activity through non-canonical Wnt signaling, which suggests a potential role in OA.
Chapter
The development and homeostasis of cartilaginous tissues are regulated by diverse microenvironmental cues including integrin-mediated interactions between chondrocytes and the extracellular matrix (ECM). Integrins are membrane receptors responsible for bi-directional communication between the cells and the surrounding by transmitting physicochemical signals through adhesion complexes. In addition, integrins are involved in sensing mechanical stress signals generated by the ECM and transduce them into the cell interior converting physical stimuli to biochemical signaling. Integrin-activated signaling cascades modulate various chondrocyte functions and play important roles in cartilage morphogenesis, homeostasis, and repair. This chapter will summarize and discuss the role of integrins in the physiology and pathophysiology of the growth plate and articular cartilage.
Article
Treatment with bromelain-containing enzyme preparation for 3–4 weeks is effective for treatment of knee osteoarthritis (OA). Here, we aimed to assess 16-week treatment with bromelain in mild-to-moderate knee OA patients. We performed a randomized, single-blind, active-controlled pilot study. Forty knee OA patients were randomized to receive oral bromelain (500 mg/day) or diclofenac (100 mg/day). Primary outcome was the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) analyzed by Wilcoxon signed rank test. Secondary outcome was the short-form 36 (SF-36). Plasma malondialdehyde (MDA) and nitrite were measured as oxidative stress markers. There was no difference in WOMAC and SF-36 scores compared between bromelain and diclofenac groups after 4 weeks. At week 4, the improvement of total WOMAC and pain subscales from baseline was observed in both groups; however, two patients given diclofenac had adverse effects leading to discontinuation of diclofenac. However, observed treatment difference was inconclusive. At week 16 of bromelain treatment, the patients had improved total WOMAC scores (12.2 versus 25.5), pain subscales (2.4 versus 5.6), stiffness subscales (0.8 versus 2.0), and function subscales (9.1 versus 17.9), and physical component of SF-36 (73.3 versus 65.4) as compared with baseline values. OA patients had higher plasma MDA, nitrite, and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated whole blood but lower plasma α-tocopherol than control subjects. Plasma MDA and LPS-stimulated PGE2 production were decreased at week 16 of bromelain treatment. Bromelain has no difference in reducing symptoms of mild-to-moderate knee OA after 4 weeks when compared with diclofenac.
Chapter
Osteoarthritis (OA) is a chronic degenerative joint disorder characterized by morphological, biochemical, molecular, and biomechanical changes in all joint tissues. Despite the heterogenic pathogenesis, it has been described that the imbalance between production of reactive oxygen species and cellular scavenging ­mechanisms—or oxidative stress—is critical for disease progression. Thus, the production of ROS not only destroys cartilage but also amplifies the inflammatory process that helps to perpetuate disease. On the other hand, since estrogens play an important role in preserving homeostasis of articular tissues, they could also act protecting the joint tissues against oxidative stress. In agreement, it has been shown that estrogen deficiency results in an increased oxidation load eventually leading to DNA damage. Moreover, the total antioxidant capacity could be restored with the administration of 17β-estradiol, indicating that estrogens might buffer the impact of oxidative stress. Estrogens represent an interesting approach for the treatment of OA, with favorable direct effects on the chondrocyte metabolism and antioxidative properties.
Article
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases in a heterogeneous group of disorders that share features of destruction of the extracellular matrices of articular cartilage and bone. The underlying disturbance in immune regulation that is responsible for the localized joint pathology results in the release of inflammatory mediators in the synovial fluid and synovium that directly and indirectly influence cartilage homeostasis. Analysis of the breakdown products of the matrix components of joint cartilage in body fluids and quantitative imaging techniques have been used to assess the effects of the inflammatory joint disease on the local remodeling of joint structures. The role of the chondrocyte itself in cartilage destruction in the human rheumatoid joint has been difficult to address but has been inferred from studies in vitro and in animal models. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the disruption of the integrity of the cartilage matrix in RA.
Chapter
Osteoarthritis is the most common cause of chronic disability in older adults. It is a slowly progressive degenerative disorder of articular joints that has multiple etiologies with age being a key factor. Osteoarthritis most commonly affects the hands, knees, hips and spine with knee osteoarthritis representing a major cause of pain and activity limitation. Current therapies are focused on symptom relief while interventions proven to slow or stop the structural progression of the disease are not yet available. No longer considered a “wear and tear” condition that is an inevitable consequence of aging, it is becoming increasingly evident that osteoarthritis has elements of chronic inflammation associated with an imbalance in anabolic and catabolic activity within affected joint tissues. Age-related changes in the cells and tissues of the joint, including cell senescence, oxidative stress, a decline in autophagy, epigenetic alterations, and matrix damage all appear to contribute to the development and progression of osteoarthritis. Which of these may serve as effective targets will be a key question to address in the search for disease modifying interventions.
Article
Intervertebral disc degeneration (IVDD) is characterized by the excessive degradation of extracellular matrix (ECM), which underlies many spine-related disorders. Matrix metalloproteinases (MMPs) and a disintegrin metalloproteinases with thrombospondin motifs (ADAMTSs) are believed to be the major proteolytic enzymes responsible for ECM degradation. This review summarizes the current literatures on gene expression and regulation of MMPs, ADAMTSs, and tissue inhibitors of metalloproteinases (TIMPs) in IVDD. Reports have showen that specific MMPs (MMP-1, -2, -3, -7, -8, -10, and -13) and ADAMTS (ADAMTS-1, -4, and -15) are upregulated in human degenerated intervertebral discs. Tissue inhibitor of metalloproteinase-3 is downregulated and TIMP-1 is upregulated in human degenerated intervertebral discs relative to nondegenerated intervertebral discs. Regulation of the MMP and ADAMTS expression is affected by many factors including mechanical, inflammatory, oxidative stress, and so on. Genetic predisposition also plays an important role in expression of MMP-1, -2, -3, and -9. Upregulation of MMP and ADAMTS expression is implicated in ECM destruction, which can lead to the development of IVDD. Future IVDD therapeutics may target specific MMPs and ADAMTSs which is essential in the pathological proteolysis of ECM. © 2015, Second Military Medical University Press. All rights reserved.
Article
Objective Osteoarthritis (OA) is a serious disease of the entire joint, characterized by articular cartilage degeneration, subchondral bone changes, osteophyte formation, and synovial hyperplasia. Currently, there are no pharmaceutical treatments that can slow the disease progression, resulting in greatly reduced quality of life for patients and the need for joint replacement surgeries in many cases. The lack of available treatments for OA is partly due to our incomplete understanding of the molecular mechanisms that promote disease initiation and progression. The purpose of the present study was to examine the role of the nuclear receptor peroxisome proliferator–activated receptor δ (PPARδ) as a promoter of cartilage degeneration in a mouse model of posttraumatic OA. Methods Mouse chondrocytes and knee explants were treated with a pharmacologic agonist of PPARδ (GW501516) to evaluate changes in gene expression, histologic features, and matrix glycosaminoglycan breakdown. In vivo, PPARδ was specifically deleted from the cartilage of mice. Histopathologic scoring according to the Osteoarthritis Research Society International (OARSI) system and immunohistochemical analysis were used to compare mutant and control mice subjected to surgical destabilization of the medial meniscus (DMM). Results In vitro, PPARδ activation by GW501516 resulted in increased expression of several proteases in chondrocytes, as well as aggrecan degradation and glycosaminoglycan release in knee joint explants. In vivo, cartilage‐specific PPARδ–knockout mice did not display any abnormalities of skeletal development but showed marked protection in the DMM model of posttraumatic OA (as compared to control littermates). OARSI scoring and immunohistochemical analyses confirmed strong protection of mutant mice from DMM‐induced cartilage degeneration. Conclusion These data demonstrate a catabolic role of endogenous PPARδ in posttraumatic OA and suggest that pharmacologic inhibition of PPARδ is a promising therapeutic strategy.
Article
Upregulation of matrix metalloproteinases (MMPs) is a hallmark of osteoarthritis progression; along with the role reactive oxygen species (ROS) may play in this process. Moreover, mitochondrial DNA damage and dysfunction are also present in osteoarthritic chondrocytes. However, there are no studies published investigating the direct relationship between mitochondrial ROS, mitochondrial DNA damage, and MMP expression. Therefore, the purpose of the present study was to evaluate whether mitochondrial DNA damage and mitochondrial-originated oxidative stress modulates matrix destruction through the upregulation of MMP protein levels. MitoSox red was utilized to observe mitochondrial ROS production while a Quantitative Southern blot technique was conducted to analyze mitochondrial DNA damage. Additionally, Western blot analysis was used to determine MMP protein levels. The results of the present study show that menadione augmented mitochondrial-generated ROS and increased mitochondrial DNA damage. This increase in mitochondrial-generated ROS led to an increase in MMP levels. When a mitochondrial ROS scavenger was added, there was a subsequent reduction in MMP levels. These studies reveal that mitochondrial integrity is essential for maintaining the cartilage matrix by altering MMP levels. This provides new and important insights into the role of mitochondria in chondrocyte function and its potential importance in therapeutic approaches.
Article
Full-text available
Integrin-mediated reorganization of cell shape leads to an altered cellular phenotype. Disruption of the actin cytoskeleton, initiated by binding of soluble antibody to α5β1 integrin, led to increased expression of the collagenase-1 gene in rabbit synovial fibroblasts. Activation of the guanosine triphosphate–binding protein Rac1, which was downstream of the integrin, was necessary for this process, and expression of activated Rac1 was sufficient to increase expression of collagenase-1. Rac1 activation generated reactive oxygen species that were essential for nuclear factor kappa B–dependent transcriptional regulation of interleukin-1α, which, in an autocrine manner, induced collagenase-1 gene expression. Remodeling of the extracellular matrix and consequent alterations of integrin-mediated adhesion and cytoarchitecture are central to development, wound healing, inflammation, and malignant disease. The resulting activation of Rac1 may lead to altered gene regulation and alterations in cellular morphogenesis, migration, and invasion.
Article
Full-text available
We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metalloproteinases collagenase and stromelysin. That induction was a direct consequence of interaction with the FnR was shown by the accumulation of mRNA for stromelysin and collagenase. Monoclonal antibodies to several other membrane glycoprotein receptors had no effect on metalloproteinase gene expression. Less than 2 h of treatment of the fibroblasts with anti-FnR in solution was sufficient to trigger the change in gene expression, and induction was blocked by dexamethasone. Unlike other inducers of metalloproteinase expression, including phorbol diesters and growth factors, addition of the anti-FnR in solution to cells adherent to serum-derived adhesion proteins or collagen produced no detectable change in cell shape or actin microfilament organization. Inductive effects were potentiated by cross-linking of the ligand. Fab fragments of anti-FnR were ineffective unless cross-linked or immobilized on the substrate. Adhesion of fibroblasts to native fibronectin did not induce metallo-proteinases. However, adhesion to covalently immobilized peptides containing the arg-gly-asp sequence that were derived from fibronectin, varying in size from hexapeptides up to 120 kD, induced collagenase and stromelysin gene expression. This suggests that degradation products of fibronectin are the natural inductive ligands for the FnR. These data demonstrate that signals leading to changes in gene expression are transduced by the FnR, a member of the integrin family of extracellular matrix receptors. The signaling of changes in gene expression by the FnR is distinct from signaling involving cell shape and actin cytoarchitecture. At least two distinct signals are generated: the binding of fibronectin-derived fragments and adhesion-blocking antibodies to the FnR triggers events different from those triggered by binding of the native fibronectin ligand. Because the genes regulated by this integrin are for enzymes that degrade the extracellular matrix, these results suggest that information transduced by the binding of various ligands to integrins may orchestrate the expression of genes regulating cell behavior in the extracellular environment.
Article
Full-text available
Nitric oxide (NO) is a major endothelium-derived relaxing factor (EDRF) released in response to vasodilating amines, peptides, proteins, ionophores, and nucleotides. EDRF is an important regulator of smooth muscle tone and platelet aggregation and adhesion. Histamine and acetylcholine relax the intact norepinephrine-constricted guinea pig pulmonary artery by an EDRF-dependent mechanism in a medium free of amino acids. N omega-Monomethylarginine (N-MeArg; 0.25 mM) inhibited this relaxation by 64-73%. Inhibition by N-MeArg developed rapidly and was immediately and completely reversed by excess L-arginine but not by D-arginine or by citrulline. N-MeArg did not diminish relaxation induced by nitroprusside, an NO-generating agent, indicating that N-MeArg acts on endothelium rather than on smooth muscle. These observations strongly suggest that, in the intact guinea pig pulmonary artery, EDRF originates from enzymatic action on the guanido nitrogen(s) of an endogenous pool of arginine. This is strikingly similar to the origin of reactive nitrogen intermediates in activated macrophages.
Article
Full-text available
Proteolysis of triple-helical collagen is an important step in the progression toward irreversible tissue damage in osteoarthritis. Earlier work on the expression of enzymes in cartilage suggested that collagenase-1 (MMP-1) contributes to the process. Degenerate reverse transcription polymerase chain reaction experiments, Northern blot analysis, and direct immunodetection have now provided evidence that collagenase-3 (MMP-13), an enzyme recently cloned from human breast carcinoma, is expressed by chondrocytes in human osteoarthritic cartilage. Variable levels of MMP-13 and MMP-1 in cartilage was significantly induced at both the message and protein levels by interleukin-1 alpha. Recombinant MMP-13 cleaved type II collagen to give characteristic 3/4 and 1/4 fragments; however, MMP-13 turned over type II collagen at least 10 times faster than MMP-1. Experiments with intact type II collagen as well as a synthetic peptide suggested that MMP-13 cleaved type II collagen at the same bond as MMP-1, but this was then followed by a secondary cleavage that removed three amino acids from the 1/4 fragment amino terminus. The expression of MMP-13 in osteoarthritic cartilage and its activity against type II collagen suggest that the enzyme plays a significant role in cartilage collagen degradation, and must consequently form part of a complex target for proposed therapeutic interventions based on collagenase inhibition.
Article
Full-text available
Recently, a new human collagenase, collagenase-3 has been identified. Since collagen changes are of particular importance in cartilage degeneration, we investigated if collagenase-3 plays a role in osteoarthritis (OA). Reverse transcriptase-PCR analysis revealed that in articular tissues collagenase-3 was expressed by the chondrocytes but not by the synoviocytes. Northern blot analysis of the chondrocyte mRNA revealed the presence of two major gene transcripts of 3.0 and 2.5 kb, and a third one of 2.2 kb was occasionally present. Compared to normal, OA showed a significantly higher (3.0 kb, P < or = 0.05; 2.5 kb, P < or = 0.03) level of collagenase-3 mRNA expression. Collagenase-3 had a higher catalytic velocity tate (about fivefold) than collagenase-1 on type II collagen. With the use of two specific antibodies, we showed that human chondrocytes had the ability to produce collagenase-3 as a proenzyme and as a glycosylated doublet. The chondrocyte collagenase-3 protein is produced in a significantly higher (P < or = 0.04) level in OA (approximately 9.5-fold) than in normal. The synthesis and expression of this new collagenase could also be modulated by two proinflammatory cytokines, IL-1 beta and TNF-alpha, in a time- and dose-dependent manner. This study provides novel and interesting data on collagenase-3 expression and synthesis in human cartilage cells and suggest its involvement in human OA cartilage patho-physiology.
Article
Full-text available
Information on the prevalence and extent of degenerative morphological changes (DMC) in the joints of the lower extremity, including foot joints is sparse. In the present study, the first and fifth metatarsalphalangeal (MTP), transverse tarsal, subtalar, talocrural, knee and hip joints of 50 cadavers were examined grossly and graded on a five-point scale for signs of DMC. Selected samples were examined histologically. Our results confirm clinical findings that severe DMC in foot joints are uncommon except in the first MTP joint where the plantar aspect is most affected. The knee joint displayed the most numerous and severe signs of DMC followed by the first MTP joint. The hip, talocrural, subtalar and transverse tarsal joints displayed comparatively moderate levels of DMC while the fifth MTP was rarely affected. The only joint to display significantly greater levels of DMC on the distal side of the joint as compared with the proximal side, when a difference was present, was the hip. There were significantly greater levels of DMC on the medial aspect of two or more joints within an extremity than on the lateral aspect. Radiographs often showed few or no signs of DMC even when erosion down to subchondral bone was observed upon gross examination.
Article
Full-text available
Reactive oxygen species (ROS) are implicated in both cartilage aging and the pathogenesis of osteoarthritis. We developed an in vitro model to study the role of chondrocyte-derived ROS in cartilage matrix protein degradation. Matrix proteins in cultured primary articular chondrocytes were labeled with [(3)H]proline, and the washed cell matrix was returned to a serum-free balanced salt solution. Exposure to hydrogen peroxide resulted in oxidative damage to the cell matrix as established by monitoring the release of labeled material into the medium. Calcium ionophore treatment of chondrocytes, in a dose-dependent manner, significantly enhanced the release of labeled matrix, suggesting a chondrocyte-dependent mechanism of matrix degradation. Antioxidant enzymes such as catalase or superoxide dismutase did not influence matrix release by the calcium ionophore-activated chondrocytes. However, vitamin E, at physiological concentrations, significantly diminished the release of labeled matrix by activated chondrocytes. The fact that vitamin E is a chain-breaking antioxidant indicates that the mechanism of matrix degradation and release is mediated by the lipid peroxidation process. Lipid peroxidation was measured in chondrocytes loaded with cis-parinaric acid. Both resting and activated cells showed constitutive and enhanced levels of lipid peroxidation activity, which were significantly reduced in the presence of vitamin E. In an immunoblot analysis, malondialdehyde and hydroxynonenal adducts were observed in chondrocyte-matrix extracts, and the amount of adducts increased with calcium ionophore treatment. Furthermore, vitamin E diminished aldehyde-protein adduct formation in activated extracts, which suggests that vitamin E has an antioxidant role in preventing protein oxidation. This study provides in vitro evidence linking chondrocyte lipid peroxidation to cartilage matrix protein (collagen) oxidation and degradation and suggests that vitamin E has a preventive role. These observations indicate that chondrocyte lipid peroxidation may have a role in the pathogenesis of cartilage aging and osteoarthritis.
Article
Full-text available
We show here the transient activation of the small GTPase Rac, followed by a rise in reactive oxygen species (ROS), as necessary early steps in a signal transduction cascade that lead to NFkappaB activation and collagenase-1 (CL-1)/matrix metalloproteinase-1 production after integrin-mediated cell shape changes. We show evidence indicating that this constitutes a new mechanism for ROS production mediated by small GTPases. Activated RhoA also induced ROS production and up-regulated CL-1 expression. A Rac mutant (L37) that prevents reorganization of the actin cytoskeleton prevented integrin-induced CL-1 expression, whereas mutations that abrogate Rac binding to the neutrophil NADPH membrane oxidase in vitro (H26 and N130) did not. Instead, ROS were produced by integrin-induced changes in mitochondrial function, which were inhibited by Bcl-2 and involved transient membrane potential loss. The cells showing this transient decrease in mitochondrial membrane potential were already committed to CL-1 expression. These results unveil a new molecular mechanism of signal transduction triggered by integrin engagement where a global mitochondrial metabolic response leads to gene expression rather than apoptosis.
Article
Full-text available
Fibronectin fragments (FN-f), including the 110-kDa fragment that binds the alpha5beta1 integrin, stimulate collagenase-3 (MMP-13) production and cartilage destruction. In the present study, treatment of chondrocytes with the 110-kDa FN-f or an activating antibody to the alpha5beta1 integrin was found to increase tyrosine autophosphorylation (Tyr-402) of the proline-rich tyrosine kinase-2 (PYK2) without significant change in autophosphorylation (Tyr-397) of focal adhesion kinase (FAK). The tyrosine kinase inhibitor tyrphostin A9, shown previously to block a PYK2-dependent pathway, blocked the FN-f-stimulated increase in MMP-13, whereas tyrphostin A25 did not. FN-f-stimulated PYK2 phosphorylation and MMP-13 production was also blocked by reducing intracellular calcium levels. Adenovirally mediated overexpression of wild type but not mutant PYK2 resulted in increased MMP-13 production. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate stimulated PYK2 phosphorylation and MMP-13 production. MMP-13 expression stimulated by either phorbol 12-myristate 13-acetate or FN-f was blocked by PKC inhibitors including the PKCdelta inhibitor rottlerin. Furthermore, PKCdelta translocation from cytosol to membrane was noted within 5 min of stimulation with FN-f. Immortalized human chondrocytes, transiently transfected with MMP-13 promoter-luciferase reporter constructs, showed increased promoter activity after FN-f treatment that was inhibited by co-transfection with either of two dominant negative mutants of PYK2 (Y402F and K457A). No inhibition was seen after cotransfection with wild type PYK2, a dominant negative of FAK (FRNK) or empty vector plasmid. FN-f-stimulated MMP-13 promoter activity was also inhibited by chemical inhibitors of ERK, JNK, and p38 mitogen-activated protein (MAP) kinases or by co-transfection of dominant negative MAP kinase mutant constructs. These studies have identified a novel pathway for the MAP kinase regulation of MMP-13 production which involves FN-f stimulation of the alpha5beta1 integrin and activation of the nonreceptor tyrosine kinase PYK2 by PKC, most likely PKCdelta
Article
Full-text available
Matrix metalloproteinase-13 (collagenase-3), a member of the family of matrix metalloproteinases (MMPs), plays a major pathological role in the cartilage destruction of arthritis. A dramatic up-regulation of MMP-13 by inflammatory cytokines such as interleukin (IL)-1beta or by fibronectin fragments has been observed in chondrocytes. In this study, we investigated the inhibitory effects of insulin-like growth factor-1 (IGF-1) and osteogenic protein-1 (OP-1) on the expression of MMP-13, which was induced by fibronectin fragment or IL-1beta in human immortalized or human primary chondrocytes. IGF-1 and OP-1 each significantly reduced the basal level as well as fibronectin fragment- or IL-1beta-stimulated transcription of the MMP-13 gene in a dose-dependent fashion with the corresponding decreases in the protein level of MMP-13. The most prominent suppressive effect was observed by the combination of IGF-1 and OP-1, which decreased the basal promoter activity by 60% and almost completely abrogated the fibronectin fragment-stimulated MMP-13 promoter activity. OP-1 was found to enhance mRNA levels of IGF-1 and the IGF-1 receptor, the latter of which appeared to be responsible for the combined effect of IGF-1 and OP-1. The suppressive effect of IGF-1 and OP-1 on MMP-13 expression was due in part to down-regulation of the expression of pro-inflammatory cytokines and the activity of their intermediate molecules, including NF-kappaB and AP-1 factors. We propose that IGF-1 and OP-1 could be key physiological regulators of MMP-13 gene expression and that the combination of IGF-1 and OP-1 may be useful in controlling the excess catabolic activity in arthritis.
Article
Full-text available
Signal transduction by reactive oxygen species (ROS; "redox signaling") has recently come into focus in cellular biology studies. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, and especially of protein tyrosine phosphatases, whose activity is dependent on the redox state of a low pKa active site cysteine. A variety of mitogenic signals, including those released by receptor tyrosine kinase (RTKs) ligands and oncogenic H-Ras, involve as a critical downstream event the intracellular generation of ROS. Signaling by integrins is also essential for the growth of most cell types and is constantly integrated with growth factor signaling. We provide here evidence that intracellular ROS are generated after integrin engagement and that these oxidant intermediates are necessary for integrin signaling during fibroblast adhesion and spreading. Moreover, we propose a synergistic action of integrins and RTKs for redox signaling. Integrin-induced ROS are required to oxidize/inhibit the low molecular weight phosphotyrosine phosphatase, thereby preventing the enzyme from dephosphorylating and inactivating FAK. Accordingly, FAK phosphorylation and other downstream events, including MAPK phosphorylation, Src phosphorylation, focal adhesion formation, and cell spreading, are all significantly attenuated by inhibition of redox signaling. Hence, we have outlined a redox circuitry whereby, upon cell adhesion, oxidative inhibition of a protein tyrosine phosphatase promotes the phosphorylation/activation and the downstream signaling of FAK and, as a final event, cell adhesion and spreading onto fibronectin.
Article
Full-text available
Fibronectin fragments (FN-f) that bind to the alpha(5)beta(1) integrin stimulate chondrocyte-mediated cartilage destruction and could play an important role in the progression of arthritis. The objective of this study was to identify potential cytokine mediators of cartilage inflammation and destruction induced by FN-f and to investigate the mechanism of their stimulation. Human articular chondrocytes, isolated from normal ankle cartilage obtained from tissue donors, were treated with a 110-kDa FN-f in serum-free culture, and expression of various cytokine genes was analyzed by cDNA microarray and by a cytokine protein array. Compared with untreated control cultures, stimulation by FN-f resulted in a >2-fold increase in IL-6, IL-8, MCP-1, and growth-related oncogene beta (GRO-beta). Constitutive and FN-f-inducible expression of GRO-alpha and GRO-gamma were also noted by RT-PCR and confirmed by immunoblotting. Previous reports of IL-1beta expression induced by FN-f were also confirmed, while TNF expression was found to be very low. Inhibitor studies revealed that FN-f-induced stimulation of chondrocyte chemokine expression was dependent on NF-kappaB activity, but independent of IL-1 autocrine signaling. The ability of FN-f to stimulate chondrocyte expression of multiple proinflammatory cytokines and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammatory state responsible for further progressive matrix destruction, which also includes the chemoattraction of inflammatory cells. Targeting the signaling pathways activated by FN-f may be an effective means of inhibiting production of multiple mediators of cartilage destruction.
Article
Here we report that the cell-permeable superoxide dismutase mimetic Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP) inhibits the oxidation of dihydrorhodamine-123 by peroxynitrite, but does not scavenge nitric oxide (NO). MnTBAP protects against the suppression of mitochondrial respiration in J774 cells exposed to peroxynitrite or to NO donors. MnTBAP and provide additive protective effect against the suppression of respiration in immunostimulated cells. Our data suggest separate contributions of NO and peroxynitrite to the suppression of mitochondrial respiration and support the role of oxidative stress in the expression of the inducible isoform of NO synthase.
Article
Affinity chromatography was used to identify a putative cell surface receptor for fibronectin. A large cell-attachment-promoting fibronectin fragment was used as the affinity matrix, and specific elution was effected by using synthetic peptides containing the sequence Arg-Gly-Asp, which is derived from the cell recognition sequence in the fibronectin cell attachment site. A 140 kd protein was bound by the affinity matrix from octylglucoside extracts of MG-63 human osteosarcoma cells and specifically eluted with the synthetic peptide Gly-Arg-Gly-Asp-Ser-Pro. The 140 kd protein was labeled by cell surface specific radioiodination and became incorporated into liposomes at a high efficiency. Liposomes containing this protein showed specific affinity toward fibronectin-coated surfaces, and this binding could be selectively inhibited by the synthetic cell-attachment peptide but not by inactive peptides. Affinity chromatography on wheat germ agglutinin-Sepharose showed that the 140 kd protein is a glycoprotein and, in combination with the fibronectin fragment chromatography, gave highly enriched preparations of the 140 kd protein. These properties suggest that the 140 kd glycoprotein is a membrane-embedded cell surface protein directly involved in the initial step of cell adhesion to fibronectin substrates.
Article
We have reported that three different Fn fragments (Fn-f) added to bovine articular cartilage cultured in serum-free DMEM cause marked elevation of proteoglycan (PG) degradation and release into the culture media. We report here that the PG release required the continual presence of Fn-f, that PG release still occurred when serum-free cultures were switched to bovine synovial fluid media, and that addition of recombinant IGF-1, TGF-beta, and recombinant interferon gamma to cultures did not affect Fn-f-mediated PG release. The Fn-f caused a 25-fold enhanced release of stromelysin-1 protein from cartilage by Day 1 and up to 120-fold by Day 3. The stromelysin form released was 43 kDa, the activated form of pro-stromelysin-1. This stromelysin form apparently played a major role in Fn-f-mediated PG release, since addition of Sepharose-bound anti-stromelysin-1 to cartilage cultures greatly slowed rates of PG release. Potential activators of pro-stromelysin-1, plasmin, and u-PA (urinary plasminogen activator), were also detected in conditioned media of Fn-f-treated cartilage. u-PA levels were increased in the presence of the Fn-f but by only a few fold. Addition of alpha-1-antiproteinase inhibitor, which can block enzymatic activity of u-PA, was found to inhibit about half the PG-releasing activity of the Fn-f. Levels of TIMP-1, the 30-kDa tissue inhibitor of metalloproteinases, which can inhibit stromelysin, doubled within 24 h when a Fn-f was added to culture. These data suggest that stromelysin-1 may be a major mediator of Fn-f-mediated PG release from cartilage.
Article
The ability of isolated human chondrocytes to produce active oxygen species has been investigated. The two methods for determining H2O2 and hydroxyl radicals (.OH) production were, by a fluorimetric method (production of dichlorofluorescein from a precursor in the presence of horseradish peroxidase and H2O2) and by a chromatographic method (measurement of ethylene production from gamma-methiol-keto-butyric acid after .OH attack). Chondrocytes were tested, both with and without activation by phorbol myristate acetate (PMA: 10(-6) M), in the presence of Ca2+ (1 x 10(-4) M) and Mg2+ (2 x 10(-4) M) or after variable periods of anoxia under nitrogen (4 to 12 h) followed by reoxygenation (with 95% O2, 5% CO2). Under these experimental conditions, the PMA-excited chondrocytes produced from 80 to 180 nmol of hydrogen peroxide per 1 x 10(6) cells and chondrocytes subjected to anoxia-reoxygenation produced up to 1700 nmol H2O2 per 1 x 10(6) cells. The hydroxyl radical production by PMA or anoxia-reoxygenation excited cells reached 600% of the production of non-excited cells and 1300% when they were subjected to successive stimulations by PMA and anoxia-reoxygenation. The possible pathological significance of these observations is discussed. The results indicate that stimulated human chondrocytes are capable of producing active oxygen species which could play a major role in joint inflammation and cartilage damage.
Article
Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFalpha) are known to induce production of reactive oxygen species (ROS), which have been suggested to act as second messengers. Here we demonstrate that ROS production by bovine chondrocytes upon cytokine stimulation induces c-jun expression. Since c-jun expression is regulated by its own gene product via phosphorylation by c-Jun NH2-terminal kinases (JNKs), we investigated if cytokines and ROS could modulate JNK activity in chondrocyte monolayer cultures. Treatment of bovine chondrocytes with both IL-1 and TNFalpha leads to rapid induction of JNK activity, stimulating JNK activity 7- and 20-fold, respectively. Importantly, the observation that antioxidant treatment antagonizes IL-1 and TNFalpha activation of JNK provides strong evidence that ROS can act as mediators of JNK activity. Moreover, potent activation of JNK is also observed by direct addition of the ROS hydrogen peroxide (H2O2) to the chondrocyte cultures. Nitric oxide (NO), a multifunctional ROS, also appears to simulate JNK, albeit to a lesser extent. These findings identify JNK as another molecular target for the actions of NO and H2O2. In addition, the inhibitory effect of diphenyleneiodonium on JNK activation implicates the involvement of flavonoid-containing enzymes in the ROS-mediated signaling process. Overstimulation of JNK activity by excessive production of ROS may, therefore, underlie pathological conditions such as arthritis and cancer.
Article
Fibronectin fragments damage cartilage in vitro by greatly enhancing metalloproteinases and suppressing proteoglycan (PG) synthesis which results in severe cartilage PG depletion. Since reactive oxygen species (ROS) have been implicated in catabolic cytokine action and preliminary data suggested that catabolic cytokines such as TNF-α, IL-1α, IL-1β and IL-6 are responsible for fibronectin fragment mediated damage, selected anti-oxidants (AOs) were tested as inhibitors of cytokine, ROS and fibronectin fragment activity. Damage was measured by depletion of cartilage PG during tissue culture. The AO, N-acetylcysteine (NAC), decreased the extent of cartilage PG depletion caused by TNF-α and IL-1α and by the ROS, hydrogen peroxide and superoxide anion, confirming that the cytokines operate through ROS and that ROS can initiate cartilage PG depletion. NAC at 0.1 and 1 mM, totally suppressed PG depletion caused by a highly potent amino-terminal 29-kDa fibronectin fragment (Fn-f) for 14 days in culture. NAC at 10 mM totally blocked Fn-f mediated PG depletion for 21 days and increased the cartilage PG content by 30% above normal levels. Glutathione (10 μM) and DMSO (1%) were also totally effective while catalase and superoxide decreased Fn-f mediated damage only during the first week and superoxide dismutase alone caused damage after 1 wk. The AOs caused protection by reducing the major catabolic activities of the Fn-f: enhanced release of stromelysin-1 (MMP-3) and suppression of PG and protein synthesis. NAC also decreased normal rates of PG degradation and increased the half-lives of labeled PG in both control and Fn-f treated cartilage. We conclude that the Fn-f mediates cartilage chondrolysis through ROS, consistent with the involvement of catabolic cytokines in the Fn-f mechanism, and that AOs greatly reduce Fn-f mediated cartilage chondrolysis. In an accompanying manuscript we also report that AOs promote reparative responses in Fn-f and cytokine treated cartilage.
Article
Porcine articular chondrocytes have the capacity to release superoxide in response to the addition of the calcium ionophore ionomycin in a concentration-dependent manner. This activity was not stimulated by the addition of fMetLeuPhe or the kinase activator phorbol myristate acetate (PMA). However, this release of superoxide was inhibited by iodonium diphenyl (IDP), suggesting the involvement of NADPH oxidase. Reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotides designed against the known sequences for the human phagocyte NADPH oxidase showed the expression of p22-phox, p40-phox, and p47-phox mRNA, while Western blot analysis of chondrocyte extracts using polyclonal antisera raised against the human phagocyte NADPH oxidase suggested the presence of the p67-phox polypeptide. These results suggest that porcine articular chondrocytes can release reactive oxygen species using a NADPH oxidase-like complex.
Article
Manganic porphyrins are redox active metal complexes that have been employed as superoxide dismutase mimics. We tested whether these metalloporphyrins could also dismute hydrogen peroxide (H2O2) and whether they could protect endothelial cells against H2O2. Both of the manganic metalloporphyrins tested were found to catalytically dismute H2O2. These manganic porphyrins also protected endothelial cells in dose-dependent manners against H2O2-mediated injury with MnTMPyP having an EC50 of 8 microM and MnTBAP having an EC50 of 15 microM. The zinc containing analogs of these porphyrins were inactive in dismuting H2O2 and did not protect. These studies further define the antioxidant capacity of metalloporphyrins in converting superoxide to H2O2 and H2O2 to water. These data suggest that manganic porphyrins may be useful therapeutics against disease states associated with the overproduction of reactive oxygen species.
Article
To investigate whether fibronectin fragments (Fn-fs), shown to damage cultured cartilage, can be found in cartilage from patients with osteoarthritis (OA) or rheumatoid arthritis, or can be generated from fibronectin (Fn) within synovial fluids or from Fn in the matrix of cultured cartilage. To also determine whether cartilage or synovial fluid Fn-fs are active and, thus, could contribute to cartilage damage in vivo. Fn-fs were immunochemically identified in cartilage extracts from patients with OA or rheumatoid arthritis or in bovine cartilage cultured with IL-1 alpha or in bovine synovial fluids treated with stromelysin-1 (MMP-3). The effect of removal of Fn-fs from OA synovial fluids was tested by passing fluids over an anti-Fn column and adding the resultant fluids to bovine cartilage cultures to measure proteoglycan (PG) degradation. Gelatin-Sepharose purified Fns from bovine plasma, synovial fluid or cartilage were digested with MMP-3 and the Fn-fs tested for degradation of PG in cultured cartilage. Extracts of cartilage from patients with rheumatoid arthritis or with OA contained a range of Fn-fs. Removal of Fn-fs from OA synovial fluids significantly reduced the resultant damage when the fluids were added to cultured cartilage. Addition of IL-1 alpha to cultured cartilage or of MMP-3 to synovial fluids enhanced generation of Fn-fs. Fn-fs, whether derived from bovine plasma or synovial fluid or cartilage Fns, damaged cartilage. These data demonstrate that although Fn-fs could be generated in vivo within synovial fluids and Fn-fs found in OA synovial fluid may contribute to cartilage damage in vivo, Fn-fs could also be generated within cartilage and amplify cartilage damage. Thus, Fn-fs may be both autocrine and paracrine regulators of cartilage metabolism.
Article
Extracellular stimuli elicit a variety of responses, such as cell proliferation and differentiation, through the cellular signalling system. Binding of growth factors to the respective receptor leads to the activation of receptor tyrosine kinases, which in turn stimulate downstream signalling systems such as mitogen-activated protein (MAP) kinases, phospholipase Cgamma (PLCgamma) and phosphatidylinositol 3-kinase. These biochemical reactions finally reach the nucleus, resulting in gene expression mediated by the activation of several transcription factors. Recent studies have revealed that cellular signalling pathways are regulated by the intracellular redox state. Generation of reactive oxygen species (ROS), such as H2O2, leads to the activation of protein tyrosine kinases followed by the stimulation of downstream signalling systems including MAP kinase and PLCgamma. The activation of PLCgamma by oxidative radical stress elevates the cellular Ca2+ levels by flux from the intracellular Ca2+ pool and from the extracellular space. Such reactions in the upstream signalling cascade, in concert, result in the activation of several transcription factors. On the other hand, reductants generally suppress the upstream signalling cascade resulting in the suppression of transcription factors. However, it is well known that cysteine residues in a reduced state are essential for the activity of many transcription factors. In fact, in vitro, oxidation of NFkappaB results in its activation, whereas reductants promote its activity. Thus, cellular signalling pathways are generally subjected to dual redox regulation in which redox has opposite effects on upstream signalling systems and downstream transcription factors. Not only are the cellular signalling pathways subjected to redox regulation, but also the signalling systems regulate the cellular redox state. When cells are activated by extracellular stimuli, the cells produce ROS, which in turn stimulate other cellular signalling pathways, indicating that ROS act as second messengers. It is thus evident that there is cross talk between the cellular signalling system and the cellular redox state. Cell death and life also are subjected to such dual redox regulation and cross talk. Death signals induce apoptosis through the activation of caspases in the cells. Oxidative radical stress induces the activation of caspases, whereas the oxidation of caspases results in their inactivation. Furthermore, some cell-death signals induce the production of ROS in the cells, and the ROS produced in turn stimulate the cell-death machinery. All this evidence shows that the cell's fate is determined by cross talk between the cellular signalling pathways and the cellular redox state through a complicated regulation mechanism.
Article
Activated articular chondrocytes produce large amounts of nitric oxide (NO), and there is increasing evidence that this is involved in the etiopathogenesis of osteoarthritis (OA). Because of its short half-life, the biological effects of endogenously produced NO are likely to occur locally within the cartilage. We have observed that inhibitors of NO synthases relieve the inhibition of matrix synthesis that otherwise occurs in response to IL-1. To avoid the use of inhibitors, we have recently transduced chondrocytes with the iNOS (NOS-2) gene and confirmed the ability of the endogenously produced NO to inhibit matrix synthesis. Despite the high levels of NO made by these cells, there was no evidence of apoptosis or other forms of cell death. NO was also shown to inhibit the production of TGF-beta(1)by cells treated with IL-1, as well as to decrease matrix production in response to IGF-1. The hypothesis that NO inhibits matrix production by interfering with important autocrine and paracrine factors should be entertained.
Article
To compare interleukin-1alpha (IL-1alpha)-induced degradation of nasal and articular cartilages in terms of proteoglycan loss and type II collagen cleavage, denaturation, and release; to examine the temporal relationship of these changes; and to investigate the effects of an inhibitor of collagenase 2 and collagenase 3 on these catabolic processes. Discs of mature bovine nasal and articular cartilages were cultured with or without human IL-1alpha (5 ng/ml) with or without RS102,481, a selective synthetic inhibitor of collagenase 2 and collagenase 3 (matrix metalloproteinase 8 [MMP-8] and MMP-13, respectively) but not of collagenase 1 (MMP-1). Immunoassays were used to measure collagenase-generated type II collagen cleavage neoepitope (antibody COL2-3/4C(short)) and denaturation (antibody COL2-3/4m), as well as total type II collagen content (antibody COL2-3/4m) in articular cartilage and culture media. A colorimetric assay was used to measure total proteoglycan concentration (principally of aggrecan) as sulfated glycosaminoglycans (sGAG). IL-1alpha initially induced a decrease in tissue proteoglycan content in nasal cartilage. A progressive loss of proteoglycan was noted during culture in articular cartilages, irrespective of the presence of IL-1alpha. In both cartilages, proteoglycan loss was followed by IL-1alpha-induced cleavage of type II collagen by collagenase, which was often reflected by increased denaturation. The inhibitor RS102,481 had no clear effect on the reduction in proteoglycan content (measured by sGAG) and collagen denaturation in either cartilage, but at 10 nM it inhibited the enhanced cleavage of type II collagen, partially in nasal cartilage and completely in articular cartilage. IL-1alpha-induced cleavage and denaturation of type II collagen is observed in both hyaline cartilages and is secondary to proteoglycan loss. It probably involves different collagenases, since there is no evidence of a rate-limiting role for collagenase 1 in articular cartilage, unlike the case for nasal cartilage. Inhibitors of this kind may be of value in the treatment of cartilage damage in arthritis. Also, the ability to detect the release of type II collagen collagenase-generated fragments from degraded cartilage offers the potential to monitor cartilage collagen damage and its control in vivo.
Article
Tumor necrosis factor-alpha (TNF-alpha) induces reactive oxygen species (ROS) that serve as second messengers for intracellular signaling. Currently, precise roles of individual ROS in the actions of TNF-alpha remain to be elucidated. In this report, we investigated the roles of superoxide anion (O-(2)), hydrogen peroxide (H(2)O(2)), and peroxynitrite (ONOO(-)) in TNF-alpha-triggered apoptosis of mesangial cells. Mesangial cells stimulated by TNF-alpha produced O-(2) and underwent apoptosis. The apoptosis was inhibited by transfection with manganese superoxide dismutase or treatment with a pharmacological scavenger of O-(2), Tiron. In contrast, although exogenous H(2)O(2) induced apoptosis, TNF-alpha-triggered apoptosis was not affected either by transfection with catalase cDNA or by treatment with catalase protein or glutathione ethyl ester. Similarly, although ONOO(-) precursor SIN-1 induced apoptosis, treatment with a scavenger of ONOO(-), uric acid, or an inhibitor of nitric oxide synthesis, N(G)-nitro-L-argininemethyl ester hydrochloride, did not affect the TNF-alpha-triggered apoptosis. Like TNF-alpha-induced apoptosis, treatment with a O-(2)-releasing agent, pyrogallol, induced typical apoptosis even in the concurrent presence of scavengers for H(2)O(2) and ONOO(-). These results suggested that, in mesangial cells, TNF-alpha induces apoptosis through selective ROS. O-(2), but not H(2)O(2) or ONOO(-), was identified as the crucial mediator for the TNF-alpha-initiated, apoptotic pathway.
Article
Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Here we review evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.
Article
Oxidative stress activates the c-Jun N-terminal kinase (JNK) pathway. However, the exact mechanisms by which reactive oxygen species (ROS) activate JNK are unclear. We found that the ability of hydrogen peroxide (H(2)O(2)) to induce JNK activation varied in different cell types. Pyrrolidine dithiocarbamate (PDTC), a presumed antioxidant, induced JNK activation on its own and enhanced JNK activation by H(2)O(2) in many cell types, including Jurkat, HEK293, and LNCaP and Tsu-Pr1 prostate cancer cells. The activation of JNK by PDTC, in the presence or absence of exogenous H(2)O(2), was dependent on its chelating ability to metal ions, most likely copper ions. Despite the strong JNK-activating ability, H(2)O(2) plus PDTC did not induce significant activation of the upstream kinases, SEK1/MKK4 and MKK7. However, the JNK inactivation rate was slower in cells treated with H(2)O(2) plus PDTC compared with the rate in cells treated with ultraviolet C (UV-C). Treatment of H(2)O(2) plus PDTC significantly decreased the expression levels of a JNK phosphatase, M3/6 (also named hVH-5), but not the levels of other phosphatases (PP2A and PP4). In contrast, UV-C irradiation did not cause the down-regulation of M3/6. These results suggest that JNK activation by H(2)O(2) plus PDTC resulted from the down-regulation of JNK phosphatases. Our data also reveal a necessity to carefully evaluate the pharmacological and biochemical properties of PDTC.
Article
Chondrocyte cell death, possibly related to increased production of endogenous nitric oxide (NO), has been observed during the pathogenesis of osteoarthritis and rheumatoid arthritis. The purpose of this study was to investigate the potential role of NO in causing chondrocyte cell death and to determine the contribution of other reactive oxygen species (ROS). Cell death and cytotoxicity were evaluated in human articular chondrocytes in response to various NO donor compounds with and without agents that stimulate or inhibit the production of additional ROS using both the alginate bead and the monolayer culture systems. Cell death was quantified by a total cell count with fluorescent labels, and cytotoxicity was measured as a function of cellular NADH- and NADPH-dependent dehydrogenase activity. To determine if the redox status of the chondrocyte could influence the observed effect of NO, cells were preincubated for 24 hours in L-cystine- and glutathione (GSH)-depleted media to reduce intracellular GSH levels, a major defense mechanism against oxidative stress. Apoptosis was analyzed with the quantification of histone-associated DNA fragments. Treatment of chondrocytes with peroxynitrite (ONOO-), 3-morpholinosydnonimine (SIN-1), and sodium nitroprusside (SNP) resulted in apoptotic cell death at concentrations of 0.5 mM, 1.0 mM, and 0.5 mM, respectively. In contrast, treatment of chondrocytes with diazeniumdiolates (or the "NOC" compounds, NOC-5 and NOC-12) at concentrations as high as 2.0 mM did not cause cell death. Furthermore, NOC-5 and NOC-12, at all concentrations tested (0.125-2.0 mM), could prevent cell death caused by oxidative stress. Selective ROS scavengers protected against cell death caused by either SIN-1 or ONOO-; however, no protection could be afforded against the cytotoxicity of SNP with any of the ROS scavengers tested. These results show that NO by itself is not cytotoxic to cultured chondrocytes and can even be protective under certain conditions of oxidative stress. Chondrocyte cell death from NO occurs under conditions where other ROS are also generated.
Article
Fragments of fibronectin occur naturally in vivo and are increased in the synovial fluid of arthritis patients. We have studied the 45 kDa fragment (Fn-f 45), representing the N-terminal collagen-binding domain of fibronectin, for its ability to modulate the expression of metalloproteinases by porcine articular chondrocytes in vitro. We report that stimulation of cultured chondrocytes, or cartilage explants, with Fn-f 45 increased the levels of matrix metalloproteinase-13 (MMP-13; collagenase-3) released into the conditioned medium in a dose-dependent manner. Increased levels of MMP-13 were due to stimulation of MMP-13 synthesis, rather than release of MMP-13 from accumulated matrix stores. Fn-f 45 also stimulated the synthesis of MMP-3 (stromelysin-1) from cultured chondrocytes and cartilage cultures. The Fn-f 45-induced increase in MMP-3 and MMP-13 synthesis occurred via an interleukin 1-independent mechanism, since the receptor antagonist of interleukin-1 was unable to block the increased synthesis. The gelatinases, MMP-2 and MMP-9, were not modulated by Fn-f 45 in these culture systems. Fn-f 45 also stimulated the release of aggrecan from cartilage explants into conditioned medium. Neoepitope antibodies specific for aggrecan fragments generated by MMPs or aggrecanases showed that the Fn-f 45-induced aggrecan loss was mediated by aggrecanases, and not by MMPs. Extracts of cultured cartilage contained elevated levels of the aggrecanase-derived ITEGE(373)-G1 domain, whereas levels of the matrix metalloproteinase-derived DIPEN(341)-G1 domain were unchanged. These studies show that Fn-f 45 can induce a catabolic phenotype in articular chondrocytes by up-regulating the expression of metalloproteinases specific for the degradation of collagen and aggrecan.
Article
Chondrocyte cell death may play an important role in the development of arthritis. The goal of the present study was to evaluate the role of the extracellular matrix (ECM) in promoting chondrocyte survival via signals through the integrin family of ECM receptors. Chondrocytes were isolated by sequential enzymatic digestion from normal ankle cartilage of organ donors and from osteoarthritic (OA) knee tissue obtained from patients undergoing total knee replacement. Cell survival in monolayer and in suspension culture was measured using fluorescent labels after treatment with specific integrin-blocking antibodies and echistatin, a disintegrin peptide. A quantitative enzyme-linked immunosorbent assay for histone-associated DNA fragments and morphologic evaluation by electron microscopy were used to evaluate apoptosis. Freshly isolated chondrocytes died when plated in serum-free media at low density on poly-L-lysine, but showed >95% survival on fibronectin (FN). A monoclonal blocking antibody to the alpha5-integrin subunit (FN receptor) significantly inhibited survival on FN, whereas control antibodies had no effect. Likewise, treatment of freshly isolated chondrocytes in serum-free alginate-suspension culture with the alpha5-blocking antibody resulted in cell death in a dose-dependent manner, with 20 microg/ml of the antibody reducing normal chondrocyte survival to 20% of that in controls, and OA chondrocyte survival to 23% of that in controls. Antibody inhibition of alphav and alpha1 integrins or treatment with echistatin did not cause cell death. Addition of insulin-like growth factor 1 (IGF-1; 100 ng/ ml) was not able to improve survival of alpha5-antibody-treated cells. However, treatment with 10% fetal bovine serum improved normal chondrocyte survival to 98% (a 5.1-fold increase) and OA chondrocyte survival to 64% (a 2.8-fold increase). Cell death due to alpha5 inhibition was associated with apoptosis. These results demonstrate that chondrocyte survival signals are transmitted via the alpha5beta1 FN receptor. Inhibition of matrix survival signals mediated by alpha5beta1 also inhibits the ability of IGF-1 to promote survival, suggesting that IGF-1-mediated survival signaling may require a cosignal from alpha5beta1.
Article
Objective: To determine if integrin-mediated signaling results in activation of chondrocyte mitogen-activated protein (MAP) kinases that lead to increased expression of matrix metalloproteinase 13 (MMP-13; collagenase 3), a potent mediator of cartilage matrix degradation. Methods: Human articular chondrocytes isolated from normal ankle and knee cartilage obtained from tissue donors were cultured in monolayers. The cells were treated with a 120-kd fibronectin fragment (FN-f) that binds the alpha5beta1 integrin or with antibodies to specific integrin receptors. Activation of MAP kinases was determined by immunoblotting with phosphospecific antibodies. MMP production was measured by gelatin zymography, and MMP-13 production and activation were determined by immunoblotting and by a fluorogenic peptide assay. Results: Human articular chondrocytes were found to respond to the 120-kd FN-f and to adhesion-blocking antibodies to the alpha2beta1 and alpha5beta1 integrins with increased phosphorylation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2, c-Jun N-terminal kinase (JNK), and p38 MAP kinases. Intact FN and integrin-blocking antibodies to alpha1, alpha3, and alphaVbeta3 and a nonblocking alpha5 antibody had no effect. After MAP kinase activation, increased phosphorylation of c-Jun and the nuclear factor kappaB inhibitor was noted, followed by increased pro- and activated MMP-13 in the conditioned media. Inhibitors of mitogen-activated protein kinase kinase, p38, and JNK were each able to inhibit increased MMP-13 production, while the interleukin-1 receptor antagonist (IL-1Ra) protein did not. However, the IL-1Ra partially inhibited FN-f-induced activation of MMP-13. Conclusion: Integrin-mediated MAP kinase signaling stimulated by FN-f is associated with increased production and release of pro- and active MMP-13. Autocrine production of IL-1 appears to result in additional MMP-13 activation. These processes may play a key role in feedback loops responsible for progressive cartilage degradation in arthritis.
Article
Oxidative stress generated by an imbalance between reactive oxygen species (ROS) and antioxidants contributes to the pathogenesis of arthritis, cancer, cardiovascular, liver and respiratory diseases. Proinflammatory cytokines and growth factors stimulate ROS production as signaling mediators. Antioxidants such as N-acetylcysteine (NAC) have been used as tools for investigating the role of ROS in numerous biological and pathological processes. NAC inhibits activation of c-Jun N-terminal kinase, p38 MAP kinase and redox-sensitive activating protein-1 and nuclear factor kappa B transcription factor activities regulating expression of numerous genes. NAC can also prevent apoptosis and promote cell survival by activating extracellular signal-regulated kinase pathway, a concept useful for treating certain degenerative diseases. NAC directly modifies the activity of several proteins by its reducing activity. Despite its nonspecificity, ability to modify DNA and multiple molecular modes of action, NAC has therapeutic value for reducing endothelial dysfunction, inflammation, fibrosis, invasion, cartilage erosion, acetaminophen detoxification and transplant prolongation.
Article
The metabolism of cells in articular joint tissues in normal and pathological conditions is subject to a complex environmental control. In addition to soluble mediators such as cytokines and growth factors, as well as mechanical stimuli, reactive oxygen species (ROS) emerge as major factors in this regulation. ROS production has been found to increase in joint diseases, such as osteoarthritis and rheumatoid arthritis, but their role in joint diseases initiation and progression remains questionable. This review is focused on the role of ROS, mainly nitric oxide, peroxynitrite and superoxide anion radicals, in the signaling mechanisms implied in the main cellular functions, including synthesis and degradation of matrix components. The direct effects of ROS on cartilage matrix components as well as their inflammatory and immunomodulatory effects are also considered. Some intracellular signaling pathways are redox sensitive and ROS are involved in the regulation of the production of some biochemical factors involved in cartilage degradation and joint inflammation. Further, ROS may cause damage to all matrix components, either by a direct attack or indirectly by reducing matrix components synthesis, by inducing apoptosis or by activating latent metalloproteinases. Finally, we have highlighted the uncoupling effect of ROS on tissue remodeling and synovium inflammation, suggesting that antioxidant therapy could be helpful to treat structural changes but not to relieve symptoms. This review of the literature supports the concept that ROS are not only deleterious agents involved in cartilage degradation, but that they also act as integral factors of intracellular signaling mechanisms. Further investigation is required to support the concept of antioxidant therapy in the management of joint diseases.
Article
OA is not an inevitable consequence of aging, but aging-related changes in the musculoskeletal system increase the risk of developing OA if other risk factors are also present. The joint is a functioning biomechanical unit of the neuromuscular system. Factors that contribute to the development of joint pain and loss of joint function include those associated with aging, those associated with underuse or misuse of the musculoskeletal system, and those associated directly with the development of OA. Complex interactions exist among many of these factors such as strength, balance, and proprioception, which are affected by aging, underuse, and OA. Many older adults who have joint pain and loss of function do not exhibit structural changes of OA that can be detected by standard radiography. When structural damage is present, its contribution to pain and disability is not always clear. In the absence of pharmacologic agents that can prevent the progression of structural damage in OA, management of older adults who have joint pain and loss of function should focus on improving neuromuscular function and preventing further declines.
Article
To examine the role of oxidative stress in mediating cell death in chondrocytes isolated from the articular cartilage of young and old adult human tissue donors. Cell death induced by the oxidant SIN-1 was evaluated in the alginate bead culture system using fluorescent probes to assess membrane integrity. Generation of peroxynitrite by the decomposition of SIN-1 was confirmed by positive immunostaining of treated cells for 3-nitrotyrosine. Determinations of oxidized glutathione (GSSG) and reduced glutathione (GSH) were performed in monolayer cultures using an enzyme- recycling assay. Cells were depleted of intracellular glutathione either by the addition of DL-buthionine-(S,R)-sulfoximine or by removal of L-cystine from the culture media. The activity of cellular antioxidant enzymes was de