Electrokinetic particle translocation through a nanopore containing a floating electrode

Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529-0247, USA.
Electrophoresis (Impact Factor: 3.03). 07/2011; 32(14):1864-74. DOI: 10.1002/elps.201100050
Source: PubMed


Electrokinetic particle translocation through a nanopore containing a floating electrode is investigated by solving a continuum model, composed of the coupled Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes equations for the flow field. Two effects due to the presence of the floating electrode, the induced-charge electroosmosis (ICEO) and the particle-floating electrode electrostatic interaction, could significantly affect the electrokinetic mobility of DNA nanoparticles. When the electrical double layers (EDLs) of the DNA nanoparticle and the floating electrode are not overlapped, the particle-floating electrode electrostatic interaction becomes negligible. As a result, the DNA nanoparticle could be trapped near the floating electrode arising from the induced-charge electroosmosis when the applied electric field is relatively high. The presence of the floating electrode attracts more ions inside the nanopore resulting in an increase in the ionic current flowing through the nanopore; however, it has a limited effect on the deviation of the current from its base current when the particle is far from the pore.

Download full-text


Available from: Ashutosh Sharma IITK
  • Source
    • "The ICEO flow exhibits large velocities and geometry dependent flow structures (Squires and Bazant 2004). Since ICEO flow is much stronger than the traditional EO flow, ICEO flows have been successfully utilized in various micro/nanofluidic applications, such as pumping (Squires and Bazant 2006), mixing (Harnett et al. 2008; Zhao and Bau 2007), generating concentration gradient (Sanchez et al. 2009), particle manipulation (Yalcin et al. 2010, 2011), and controlling DNA nanoparticle translocation through a nanopore (Zhang et al. 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A cylindrical gold-coated stainless steel rod was positioned at the center of a straight microchannel connecting two fluid reservoirs on either end. The microchannel was filled with 1 mM KCl containing 0.5 μm diameter carboxylate-modified spherical particles. Induced-charge electro-osmotic (ICEO) flow occurred around the metallic rod under a sinusoidal AC electric field applied using two platinum electrodes. The ICEO flows around the metallic rod were measured using micro particle image velocimetry (micro-PIV) technique as functions of the AC electric field strength and frequency. The present study provides experimental data about ICEO flow in the weakly nonlinear limit of thin double layers, in which, the charging dynamics of the double layer cannot be presented analytically. The measured ICEO flow pattern qualitatively agrees with the theoretical results obtained by Squires and Bazant (J Fluid Mech 509:217–252, 2004). Flow around the rod is quadrupolar, driving liquid towards the rod along the electric field and forcing it away from the rod in the direction perpendicular to the imposed electric field. The measured ICEO flow velocity is proportional to the square of the electric field strength, and depends on the applied AC frequency.
    Full-text · Article · Jan 2012 · Microfluidics and Nanofluidics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electrokinetics has emerged as one of the most promising techniques to transport and manipulate ions, fluid and particles in micro/nanofluidic devices. Field effect permits flexible and rapid control of the surface charge property on the channel wall, which in turn offers a more sophisticated control of the electrokinetic transport phenomena in micro/nanofluidics. In the field effect control, a potential named as gate potential is applied to a gate electrode patterned on the outer surface of the dielectric channel wall in contact with an aqueous solution, and the imposed radial electric field can effectively modulate the surface potential at the channel/liquid interface, resulting in the redistribution of ions and accordingly the ionic conductance of a nanochannel. The modulation of the surface potential at the channel/liquid interface can also affect the electrokinetic transport of fluids and particles. This tutorial review elucidates the physical mechanism and discusses some typical results of the field effect control of ion, fluid and particle electrokinetic transport in micro/nanofluidics.
    No preview · Article · Jan 2012 · Sensors and Actuators B Chemical
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of the local liquid permittivity surrounding the DNA nanoparticle, referred to as the local permittivity environment (LPE) effect, on its electrokinetic translocation through a nanopore is investigated for the first time using a continuum-based model, composed of the coupled Poisson–Nernst–Planck (PNP) equations for the ionic mass transport and the Stokes and Brinkman equations for the hydrodynamic fields in the region outside of the DNA and within the ion-penetrable layer of the DNA nanoparticle, respectively. The nanoparticle translocation velocity and the resulting current deviation are systematically investigated for both uniform and spatially varying permittivities surrounding the DNA nanoparticle under various conditions. The LPE effect in general reduces the particle translocation velocity. The LPE effect on the current deviation is insignificant when the imposed electric field is relatively high. However, when the electric field and the bulk electrolyte concentration are relatively low, both current blockade and enhancement are predicted with the LPE effect incorporated, while only current blockade is predicted with the assumption of constant liquid permittivity. It is thereby shown that regardless of the electric field imposed the predictions on ionic current with considering the LPE effect are in good qualitative agreement with the experimental observations obtained in the literature.
    Full-text · Article · Feb 2012 · The Journal of Physical Chemistry C
Show more